Exogenous retroviruses are obligate cellular parasites that co-opt a number of host proteins and functions to enable their replication and spread. Several host factors that restrict HIV and other retroviral infections have also recently been described. Here we demonstrate that Mov10, a protein associated with P-bodies that has a putative RNA-helicase domain, when overexpressed in cells can inhibit the production of infectious retroviruses. Interestingly, reducing the endogenous Mov10 levels in virus-producing cells through siRNA treatment also modestly suppresses HIV infectivity. The actions of Mov10 are not limited to HIV, however, as ectopic expression of Mov10 restricts the production of other lentiviruses as well as the gammaretrovirus, murine leukemia virus. We found that HIV produced in the presence of high levels of Mov10 is restricted at the pre-reverse transcription stage in target cells. Finally, we show that either helicase mutation or truncation of the C-terminal half of Mov10, where a putative RNA-helicase domain is located, maintained most of its HIV inhibition; whereas removing the N-terminal half of Mov10 completely abolished its activity on HIV. Together these results suggest that Mov10 could be required during the lentiviral lifecycle and that its perturbation disrupts generation of infectious viral particles. Because Mov10 is implicated as part of the P-body complex, these findings point to the potential role of cytoplasmic RNA processing machinery in infectious retroviral production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816699 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009081 | PLOS |
Medicine (Baltimore)
November 2024
Department of Gastrointestinal Oncology, Affiliated Hospital of Qinghai University, Xining, China.
Ovarian cancer (OC) is a malignant gynecological cancer with an extremely poor prognosis. Stress granules (SGs) are non-membrane organelles that respond to stressors; however, the correlation between SG-related genes and the prognosis of OC remains unclear. This systematic analysis aimed to determine the expression levels of SG-related genes between high- and low-risk groups of patients with OC and to explore the prognostic value of these genes.
View Article and Find Full Text PDFBMC Genom Data
November 2024
Youjiang Medical University for Nationalities, Baise, 533000, China.
This multi-omics study delves into the expression patterns of PIWIL genes and their correlation with hepatocellular carcinoma (HCC) progression, utilizing whole transcriptome sequencing, bioinformatics, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) in mice. We identified differential expression levels of PIWIL genes between HCC and control tissues and analyzed their roles within the competing endogenous RNA (ceRNA) network related to regulatory non-coding RNA-mediated gene silencing (RNGS). Our findings showed that Piwil1 and Piwil4 were overexpressed while Piwil2 is underexpressed.
View Article and Find Full Text PDFMol Med Rep
January 2025
Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China.
Objective: This study investigated the genetic and epigenetic mechanisms underlying the comorbidity patterns of five substance dependence diagnoses (SDs; alcohol, AD; cannabis, CaD; cocaine, CoD; opioid, OD; tobacco, TD).
Methods: A latent class analysis (LCA) was performed on 31,197 individuals (average age 42±11 years; 49% females) from six cohorts to identify comorbid DSM-IV SD patterns. In subsets of this sample, we tested SD-latent classes with respect to polygenic burden of psychiatric and behavioral traits and epigenome-wide changes in three population groups.
Nucleic Acids Res
November 2024
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany.
The RNA genome of the SARS-CoV-2 virus encodes for four structural proteins, 16 non-structural proteins and nine putative accessory factors. A high throughput analysis of interactions between human and SARS-CoV-2 proteins identified multiple interactions of the structural Nucleocapsid (N) protein with RNA processing factors. The N-protein, which is responsible for packaging of the viral genomic RNA was found to interact with two RNA helicases, UPF1 and MOV10 that are involved in nonsense-mediated mRNA decay (NMD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!