Local interneurons are essential in information processing by neural circuits. Here we present a comprehensive genetic, anatomical and electrophysiological analysis of local interneurons (LNs) in the Drosophila melanogaster antennal lobe, the first olfactory processing center in the brain. We found LNs to be diverse in their neurotransmitter profiles, connectivity and physiological properties. Analysis of >1,500 individual LNs revealed principal morphological classes characterized by coarsely stereotyped glomerular innervation patterns. Some of these morphological classes showed distinct physiological properties. However, the finer-scale connectivity of an individual LN varied considerably across brains, and there was notable physiological variability within each morphological or genetic class. Finally, LN innervation required interaction with olfactory receptor neurons during development, and some individual variability also likely reflected LN-LN interactions. Our results reveal an unexpected degree of complexity and individual variation in an invertebrate neural circuit, a result that creates challenges for solving the Drosophila connectome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847188PMC
http://dx.doi.org/10.1038/nn.2489DOI Listing

Publication Analysis

Top Keywords

local interneurons
12
antennal lobe
8
physiological properties
8
morphological classes
8
diversity wiring
4
wiring variability
4
variability olfactory
4
olfactory local
4
interneurons drosophila
4
drosophila antennal
4

Similar Publications

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Epilepsy is a network disorder, involving neural circuits at both the micro- and macroscale. While local excitatory-inhibitory imbalances are recognized as a hallmark at the microscale, the dynamic role of distinct neuron types during seizures remain poorly understood. At the macroscale, interactions between key nodes within the epileptic network, such as the central median thalamic nucleus (CMT), are critical to the, hippocampal epileptic process.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.

Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!