Myocardial infarction (MI) causes myocardium injury and scar formation, and the transmural infarction is associated with ventricular hypofunction. Stem cell transplantation therapy has improved cardiac function in animal models of MI. However, the poor survival of the donor cells in the host myocardium hampers the therapeutic efficacy of stem cell transplantation. Diazoxide, a mitochondrial ATP-sensitive potassium channel opener, has been applied to suppress cell apoptosis and promote cell survival. We therefore assessed the effects of diazoxide on the selected mesenchymal stem cells (SMSCs). Pretreatment of SMSCs with diazoxide (200 micromol/L) for 30 min protected cells from oxidative stress injury by upregulating the expression of basic fibroblast growth factor and hepatocyte growth factor mRNAs and phospho-Akt and by preventing mitochondral cytochrome c translocation into the cytoplasm. Expression of mRNAs and proteins was detected by RT-PCR and western blot analyses. Thirty min after establishment of MI (the ligation of the left anterior descending of coronary artery) in female rats, the male rat SMSCs preconditioned with diazoxide were injected at four sites on the edge of the infarcted area. At 4 weeks after cell tranplantation, the donor cells in the recipient myocardium were tracked with Y chromosome. Preconditioning with diazoxide improved the survival rate of the transplanted SMSCs, compared to the untreated SMSCs. Moreover, transplantation of the diazoxide-pretreated SMSCs reduced the infarct size and increased left ventricular function, as judged by transthoracic echocardiography. In conclusion, diazoxide preconditioning is effective to promote SMSCs survival under oxidative stress and attenuates cardiac injury in MI.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.220.139DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cells
8
preconditioned diazoxide
8
diazoxide mitochondrial
8
mitochondrial atp-sensitive
8
atp-sensitive potassium
8
potassium channel
8
channel opener
8
myocardial infarction
8
stem cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!