Cellulase hyperproducing mutants derived from the fungus Trichoderma reesei QM9414 were analyzed. They exhibited higher filter-paper degrading activity and a lower growth rate than the wild-type QM9414 strain. Transcription of the cellobiohydrolase I and endoglucanase I genes in the mutants was also greater than that of QM9414, suggesting that cellulase hyperproduction by these mutants was regulated at the transcriptional level.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.90655DOI Listing

Publication Analysis

Top Keywords

cellulase hyperproducing
8
hyperproducing mutants
8
mutants derived
8
derived fungus
8
fungus trichoderma
8
trichoderma reesei
8
reesei qm9414
8
cellulase
4
mutants
4
qm9414
4

Similar Publications

Transgressive phenotypes from outbreeding between the hyper producer RutC30 and a natural isolate.

Microbiol Spectr

October 2024

Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France.

Unlabelled: the main filamentous fungus used for industrial cellulase production, was long considered to be asexual. The recent discovery of the mating type locus in the natural isolate QM6a and the possibility to cross this sterile female strain with a fertile natural female strain opened up a new avenue for strain optimization. We crossed the hyperproducer RutC30 with a compatible female ascospore-derived isolate of the wild-type strain CBS999.

View Article and Find Full Text PDF

Background: The fungus Trichoderma reesei is one of the most used industrial cellulase producers due to its high capacity of protein secretion. Strains of T. reesei with enhanced protein secretion capacity, such as Rut-C30, have been obtained after several rounds of random mutagenesis.

View Article and Find Full Text PDF

Early cellular events and potential regulators of cellulase induction in Penicillium janthinellum NCIM 1366.

Sci Rep

March 2023

Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India.

Cellulase production by fungi is tightly regulated in response to environmental cues, and understanding this mechanism is a key pre-requisite in the efforts to improve cellulase secretion. Based on UniProt descriptions of secreted Carbohydrate Active enZymes (CAZymes), 13 proteins of the cellulase hyper-producer Penicillium janthinellum NCIM 1366 (PJ-1366) were annotated as cellulases- 4 cellobiohydrolases (CBH), 7 endoglucanases (EG) and 2 beta glucosidases (BGL). Cellulase, xylanase, BGL and peroxidase activities were higher for cultures grown on a combination of cellulose and wheat bran, while EG was stimulated by disaccharides.

View Article and Find Full Text PDF

Background: The major challenge of facing the efficient utilization of biomass is the high cost of cellulolytic enzyme, while the Trichoderma longibrachiatum plays an essential role in the production of industrial enzymes and biomass recycling.

Results: The cellulase hyper‑producing mutants of LC-M4 and LC-M16 derived from the wild type T. longibrachiatum LC strain through heavy ion mutagenesis exhibited the high-efficiency secretion ability of cellulase and hemicellulose.

View Article and Find Full Text PDF

Droplet-based microfluidic platform for high-throughput screening of Streptomyces.

Commun Biol

May 2021

Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

Streptomyces are one of the most important industrial microorganisms for the production of proteins and small-molecule drugs. Previously reported flow cytometry-based screening methods can only screen spores or protoplasts released from mycelium, which do not represent the filamentous stationary phase Streptomyces used in industrial cultivation. Here we show a droplet-based microfluidic platform to facilitate more relevant, reliable and rapid screening of Streptomyces mycelium, and achieved an enrichment ratio of up to 334.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!