We previously identified that autoreactive B cells from BXD2 mice can be targeted by IL-17, leading to upregulation of the expression of regulators of G-protein signaling (Rgs) genes that facilitated the development of spontaneous germinal centers. Little is known about the signaling pathway used by IL-17 to upregulate RGS. In the current study, we found that IL-17 rapidly activates the canonical NF-kappaB signaling pathway and that BXD2 B cells exhibit higher basal and activated phosphorylated p65 levels than B6 or BXD2-Il17ra(-/-) B cells. Inhibition of p65 phosphorylation downregulated RGS16 expression and abrogated the IL-17-induced chemotactic arrest of B cells in response to CXCL12. Knockdown of TNFR-associated factor 6 or NF-kappaB activator 1 in 70Z/3 pre-B cells led to decreased Rgs16 expression, indicating that both of these two genes are involved in IL-17-mediated activation of NF-kappaB signaling in B cells. These findings identify the signaling pathway regulated by IL-17 to contribute to the development of spontaneous germinal centers in autoimmune BXD2 mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849003 | PMC |
http://dx.doi.org/10.4049/jimmunol.0903133 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!