Specific coiled-coil interactions contribute to a global model of the structure of the spindle pole body.

J Struct Biol

Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.

Published: May 2010

As the microtubule-organizing center of yeast, the spindle pole body (SPB) is essential for cell viability. Structural studies of the SPB are limited by its low copy number in the cell, its large size and heterogeneous composition, and its association with the nuclear membrane. However, low-resolution or indirect structural information about the SPB may be deciphered through a variety of techniques. Interestingly, a large proportion of SPB proteins are predicted to contain one or more coiled coils, a common protein interaction motif. The high frequency of coiled coils suggests that this structure is important for establishing the overall architecture of the complex. Support for this hypothesis was reported previously for coiled coils from some SPB proteins. Here, we extend this approach of isolating and characterizing additional SPB coiled coils to improve our understanding of SPB structure and organization. Self-associating coiled coils from Bbp1, Mps2, and Nbp1 were observed to form stable parallel homodimers in solution. Coiled-coil peptides from Bbp1 and Mps2 were also observed to hetero-associate. Experimental coiled-coil interaction data from this work and previous studies, as well as predicted and experimental structures for other SPB protein fragments and domains, were integrated to generate a model of the SPB structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2010.01.022DOI Listing

Publication Analysis

Top Keywords

coiled coils
20
spb
9
spindle pole
8
pole body
8
spb proteins
8
spb structure
8
bbp1 mps2
8
coiled
5
coils
5
specific coiled-coil
4

Similar Publications

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Systemic-to-pulmonary collaterals (SPCs) are common in congenital heart disease (CHD). Particularly in single ventricle anatomy and Fontan circulation, SPC can both complicate the postoperative course and lead to clinical deterioration in the long term. The treatment of SPC is controversial.

View Article and Find Full Text PDF

Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.

View Article and Find Full Text PDF

Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.

View Article and Find Full Text PDF

Microsurgical clipping remains a viable option for the treatment of coilable ruptured middle cerebral artery aneurysms in the endovascular era.

Neurosurg Rev

January 2025

Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, 15355, Ansan, Gyeonggi-do, South Korea.

Although many institutions increasingly perform endovascular coiling instead of microsurgical clipping as the primary treatment for ruptured aneurysms, there remains ongoing debate regarding the optimal treatment strategy for ruptured middle cerebral artery (MCA) aneurysms. Therefore, we compared the outcomes of clipping and coiling for treating ruptured MCA aneurysms. A total of 155 ruptured MCA aneurysms that were deemed eligible for both clipping and coiling were retrospectively reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!