Silk fibroin encapsulated powder reservoirs for sustained release of adenosine.

J Control Release

Department for Biomedical Engineering, Tufts University, Medford, MA 02155, USA.

Published: June 2010

Due to its unique properties, silk fibroin was studied as a biodegradable polymer vehicle for sustained, local delivery of the anticonvulsant adenosine from encapsulated reservoirs. Silk is a biologically derived protein polymer that is biocompatible, mechanically strong and degrades to non-toxic products in vivo. To achieve local, sustained, controlled adenosine release from fully degradable implants, solid adenosine powder reservoirs were coated with silk fibroin. Material properties of the silk coating including thickness, crystallinity and morphology were investigated to assess the relationships between silk coating biomaterial features and adenosine release from silk encapsulated reservoirs. Reservoir coating thickness was varied through manipulation of the silk coating solution concentration and number of coatings applied. Release studies were also performed in proteinase type XIV to model the effects of degradation. Increasing the barrier to diffusion, either by increasing coating thickness or crystallinity was found to delay adenosine burst, decrease average daily release rate, and increase duration of release. In the case of encapsulated reservoirs coated with eight layers of 8% (w/v) silk, a linear release profile was observed and adenosine release was sustained for 14days. The ability to achieve nearly constant release for 2weeks for adenosine via control of the silk coating suggests these encapsulated reservoirs represent a novel system for delivering adenosine. We anticipate that this approach could also be extended to other implant needs and small-molecule drugs to treat a range of clinical needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868941PMC
http://dx.doi.org/10.1016/j.jconrel.2010.01.035DOI Listing

Publication Analysis

Top Keywords

encapsulated reservoirs
16
silk coating
16
silk fibroin
12
adenosine release
12
silk
10
release
9
adenosine
9
powder reservoirs
8
properties silk
8
reservoirs coated
8

Similar Publications

Preparation and Performance Evaluation of CO Foam Gel Fracturing Fluid.

Gels

December 2024

Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.

The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.

View Article and Find Full Text PDF

Controlled Synthesis of the FeB Nanometallic Glasses with Stronger Electron Donating Capability to Activate Molecular Oxygen for the Enhanced Ferroptosis Therapy.

Adv Healthc Mater

December 2024

School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China.

Considering the strong electron-donating ability and the superior biocompatibility, the integration of zero-valent iron nanostructure Fe (electron-reservoir) and zero-valent boron nanostructure B offers great promise for fabricating novel ferroptosis nanoagents. Nevertheless, the controlled and facile synthesis of alloyed Fe and B nanostructure-FeB nanometallic glasses (NMGs) has remained a long-standing challenge. Herein, a complexion-reduction strategy is proposed for the controlled synthesis of FeB NMGs with greater electron donating capacity to activate the molecular oxygen for improved ferroptosis therapy.

View Article and Find Full Text PDF

Supramolecular cyclodextrin-based reservoir as nasal delivery vehicle for rivastigmine to brain.

Carbohydr Polym

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:

The purpose of this study involved the synthesis of supramolecular reservoir (i.e. cyclodextrin metal-organic framework, MOF) using cyclodextrins as building blocks, followed by cross-linking to obtain crosslinked CD framework (CDF) using CD-MOF as template and functionalized with borneol (BO) to enhance rivastigmine (RIV) permeation and facilitate brain targeting via intranasal administration.

View Article and Find Full Text PDF
Article Synopsis
  • Esophageal cancer is a major global health issue, ranking sixth in cancer-related deaths, and doxorubicin (DOX) is a common treatment despite its toxic side effects and limitations in targeting tumors.
  • Researchers have developed a pH-responsive peptide called IEK that can encapsulate DOX and form a stable hydrogel, which effectively releases the drug in acidic tumor environments.
  • This hydrogel not only improves the targeting and sustained release of DOX, thereby increasing its effectiveness and reducing overall toxicity, but also demonstrates promising anti-tumor results in experiments.
View Article and Find Full Text PDF

Extracellular matrix mimetic supramolecular hydrogels reinforced with covalent crosslinked mesoporous silica nanoparticles.

J Mater Chem B

December 2024

Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P. O. Box 616, 6200 MD Maastricht, The Netherlands.

Article Synopsis
  • The extracellular matrix (ECM) is crucial for tissue regeneration, and researchers are interested in developing hydrogels that mimic its dynamic and fibrous structure for regenerative medicine.
  • A new hybrid hydrogel network was created by combining supramolecular assemblies with covalent crosslinkers made from mesoporous silica nanoparticles (MSNs) and functionalized macromonomers, enhancing the mechanical properties.
  • The resulting NBTA-MSN nanocomposites showed improved structural stability, elasticity, self-healing, injectability, and good cytocompatibility, along with the ability to serve as calcium and phosphate ion reservoirs, making them promising materials for various applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!