For efficient pain reduction in severe skin wounds, topically applied opioids may be a new option. Moreover, by stimulating keratinocyte migration opioids may also accelerate wound healing. Yet, conventional formulations failed to consistently provide sufficient pain control in patients which may be due to local drug degradation or insufficient concentrations at the target site. After having excluded major morphine glucuronidation by keratinocytes and fibroblasts, we next aimed for an optimised formulation. Since long intervals for painful wound dressing changes are intended, the formulations should allow for prolonged opioid release and should not impair the healing process. We developed morphine-loaded solid lipid nanoparticles (SLN, mean size about 180 nm), and tested improvement of wound closure in a new human-based 3D-wound healing model. Standardised wounds were induced by CO(2)-laser irradiation of reconstructed human full-thickness skin equivalents (EpiDermFT). Morphine, morphine-loaded and unloaded SLN accelerated reepithelialization. Keratinocytes almost completely covered the dermis equivalent after 4 days, which was not the case when applying the vehicle. In conclusion, acceleration of wound closure, low cytotoxicity and irritation as well as possible prolonged morphine release make SLN an interesting approach for innovative wound management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2010.01.001DOI Listing

Publication Analysis

Top Keywords

3d-wound healing
8
healing model
8
solid lipid
8
lipid nanoparticles
8
wound closure
8
wound
5
model influence
4
morphine
4
influence morphine
4
morphine solid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!