One apparent feature of cancerous cells is genomic instability, which may include various types of chromosomal aberrations, such as translocation, aneuploidy, and the presence of micronuclei inside the cells. Mutagenic factors that promote the emergence of genomic instability are recognized as risk factors for the development of human malignancies. In Asia, betel quid (BQ) chewing is one of such risk factors for oral cancer. Areca nut is an essential constitute of BQ and is declared as a group I carcinogen by the International Agency for Research on Cancer. However, the molecular and cellular mechanisms regarding the carcinogenicity of areca nut are not fully explored. Here we reported that arecoline, a major alkaloid of areca nut, could arrest cells at prometaphase with large amounts of misaligned chromosomes. This prometaphase arrest was evidenced by condensed chromosome pattern, increased histone H3 phosphorylation, and accumulation of mitotic proteins, including aurora A and cyclin B(1). To investigate the molecular mechanisms accounting for arecoline-induced prometaphase arrest, we found that arecoline could stabilize mitotic spindle assembly, which led to distorted organization of mitotic spindles, misalignment of chromosomes, and up-regulation of spindle assembly checkpoint (SAC) genes. The SAC proteins BubR1 and Mps1 were differentially modified between the cells treated with arecoline and nocodazole. This together with aurora A overexpression suggested that SAC might be partly suppressed by arecoline. As a result, the arecoline-exposed cells might produce progeny that contained various chromosomal aberrations and exhibited genomic instability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.oraloncology.2010.01.003DOI Listing

Publication Analysis

Top Keywords

spindle assembly
16
genomic instability
12
areca nut
12
cells prometaphase
8
mitotic spindle
8
assembly checkpoint
8
chromosomal aberrations
8
risk factors
8
prometaphase arrest
8
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!