Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This work presents a computer-aided method for automatically and objectively classifying individuals with healthy and dysfunctional vocal fold vibration patterns as depicted in clinical high-speed (HS) videos of the larynx.
Methods: By employing a specialized image segmentation and vocal fold movement visualization technique - namely phonovibrography - a novel set of numerical features is derived from laryngeal HS videos capturing the dynamic behavior and the symmetry of oscillating vocal folds. In order to assess the discriminatory power of the features, a support vector machine is applied to the preprocessed data with regard to clinically relevant diagnostic tasks. Finally, the classification performance of the learned nonlinear models is evaluated to allow for conclusions to be drawn about suitability of features and data resulting from different examination paradigms. As a reference, a second feature set is determined which corresponds to more traditional voice analysis approaches.
Results: For the first time an automatic classification of healthy and pathological voices could be obtained by analyzing the vibratory patterns of vocal folds using phonovibrograms (PVGs). An average classification accuracy of approximately 81% was achieved for 2-class discrimination with PVG features. This exceeds the results obtained through traditional voice analysis features. Furthermore, a relevant influence of phonation frequency on classification accuracy was substantiated by the clinical HS data.
Conclusion: The PVG feature extraction and classification approach can be assessed as being promising with regard to the diagnosis of functional voice disorders. The obtained results indicate that an objective analysis of dysfunctional vocal fold vibration can be achieved with considerably high accuracy. Moreover, the PVG classification method holds a lot of potential when it comes to the clinical assessment of voice pathologies in general, as the diagnostic support can be provided to the voice clinician in a timely and reliable manner. Due to the observed interdependency between phonation frequency and classification accuracy, in future comparative studies of HS recordings of oscillating vocal folds homogeneous frequencies should be taken into account during examination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2010.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!