Background And Purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T(2) relaxation time for early detection of WD.

Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T(2) relaxometry and multi-b value DWI were acquired by using a 7T MR imaging scanner. ADC-map and T(2)-map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T(2) relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation.

Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P<0.05) in affected side compared to the unaffected, healthy side; no difference in T(2) relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations.

Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T(2) relaxation time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2009.12.029DOI Listing

Publication Analysis

Top Keywords

relaxation time
12
wallerian degeneration
12
sensitivity adc
8
time early
8
early detection
8
adc relaxation
8
cortex ablation
8
corticospinal tract
8
comparative study
4
study sensitivity
4

Similar Publications

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network.

ACS Macro Lett

January 2025

Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.

Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Transient shear wave elastometry using a portable magnetic resonance sensor.

Magn Reson Med

January 2025

MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.

Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.

View Article and Find Full Text PDF

The behavior of water in concentrated ionic solutions, including supersaturated conditions, is crucial for numerous material and energy conversion processes and fundamental research. All electrolytes whether they "structure-make" or "structure-break" the water structure lead to slower water motion. This study investigates the structure and dynamics of aqueous NaCl solutions across a wide range of concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!