Background: To establish and maintain their polarized morphology, neurons employ active transport driven by molecular motors to sort cargo between axons and dendrites. However, the basic traffic rules governing polarized transport on neuronal microtubule arrays are unclear.
Results: Here we show that the microtubule minus-end-directed motor dynein is required for the polarized targeting of dendrite-specific cargo, such as AMPA receptors. To directly examine how dynein motors contribute to polarized dendritic transport, we established a trafficking assay in hippocampal neurons to selectively probe specific motor protein activity. This revealed that, unlike kinesins, dynein motors drive cargo selectively into dendrites, governed by their mixed microtubule array. Moreover, axon-specific cargos, such as presynaptic vesicle protein synaptophysin, are redirected to dendrites by coupling to dynein motors. Quantitative modeling demonstrated that bidirectional dynein-driven transport on mixed microtubules provides an efficient mechanism to establish a stable density of continuously renewing vesicles in dendrites.
Conclusions: These results demonstrate a powerful approach to study specific motor protein activity inside living cells and imply a key role for dynein in dendritic transport. We propose that dynein establishes the initial sorting of dendritic cargo and additional motor proteins assist in subsequent delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2009.12.052 | DOI Listing |
J Biol Chem
December 2024
Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.
View Article and Find Full Text PDFMol Biol Cell
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China. Electronic address:
Esophageal cancer is a major malignancy with a high incidence and poor prognosis. To elucidate the mechanisms underlying its progression, particularly with respect to cell division and spindle orientation, we investigated the role of m6A modifications and the centrosomal protein CEP170. Using m6A-seq and RNA-seq of esophageal cancer tissues and adjacent normal tissues, we identified significant alterations in m6A modifications and gene expression, highlighting the upregulation and m6A enrichment of CEP170 in tumor tissues.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Molecular, Cellular, Developmental Biology and Genetics Program, University of Minnesota, Minneapolis, MN, USA.
Throughout the cell, motor proteins work together to drive numerous molecular processes and functions. For example, ensembles of myosin motors collectively transport vesicles and organelles, maintain membrane homeostasis, and drive muscle contraction. Studying these motors in groups has become increasingly important with work demonstrating the emergence of ensemble behavior distinct from individual motor behavior.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan.
The recent development of the DNA-binding domain (DBD)-dynein chimera motors with a dynein motor core and a DNA-binding domain has made it possible to move on DNA nanostructure tracks. In contrast to naturally occurring cytoskeletal filaments such as microtubules and actin filaments, DNA tracks can be programmed with structural properties such as length, stiffness, and circumference. There might be many advantages to using DNA as a track, for example, for applications in nanotechnology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!