Osteoarthritis (OA) is a prevalent age-associated disease involving altered chondrocyte homeostasis and cartilage degeneration. The avascular nature of cartilage and the altered chondrocyte phenotype characteristic of OA severely limit the capacity for in vivo tissue regeneration. Cell- and tissue-based repair has the potential to revolutionize treatment of OA, but those approaches have exhibited limited clinical success to date. In this study, we test the hypothesis that bovine and human chondrocytes in a collagen type I scaffold will form hyaline cartilage ex vivo with immunohistochemical, biochemical, and magnetic resonance (MR) endpoints similar to the original native cartilage. Chondrocytes were isolated from 1- to 3-week-old calf knee cartilage or from cartilage obtained from human total knee arthroplasties, suspended in 2.7 mg/mL collagen I, and plated as 300 microL spot cultures with 5 x 10(6) each. Medium formulations were varied, including the amount of serum, the presence or absence of ascorbate, and treatments with cytokines. Bovine chondrocytes generated metachromatic territorial and interstitial matrix and accumulated type II collagen over time. Type VI collagen was confined primarily to the pericellular region. The ex vivo-formed bovine cartilage contained more chondroitin sulfate per dry weight than native cartilage. Human chondrocytes remained viable and generated metachromatic territorial matrix, but were unable to support interstitial matrix accumulation. MR analysis of ex vivo-formed bovine cartilage revealed evidence of progressively maturing matrix, but MR-derived indices of tissue quality did not reach those of native cartilage. We conclude that the collagen-spot culture model supports formation and maturation of three-dimensional hyaline cartilage from active bovine chondrocytes. Future studies will focus on determining the capacity of human chondrocytes to show comparable tissue formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947949PMC
http://dx.doi.org/10.1089/ten.TEA.2009.0717DOI Listing

Publication Analysis

Top Keywords

cartilage
12
human chondrocytes
12
native cartilage
12
bovine human
8
immunohistochemical biochemical
8
biochemical magnetic
8
magnetic resonance
8
altered chondrocyte
8
hyaline cartilage
8
cartilage human
8

Similar Publications

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review.

Bone Res

January 2025

Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent.

View Article and Find Full Text PDF

Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage.

Acta Biomater

January 2025

Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:

The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.

View Article and Find Full Text PDF

Percutaneous intra-meniscal platelet-rich plasma (PRP) is a promising tool for managing low-grade meniscal injuries in non-athletic patients. The study evaluates the clinical and radiological outcomes of PRP intra-meniscal injection in meniscal tears. Forty-eight patients were injected with 3 injections of PRP at an interval of one week with a standardised technique under sonographic guidance.

View Article and Find Full Text PDF

Biomechanical study of elbow joint: different stages after the elbow anterior capsule injury.

Acta Bioeng Biomech

September 2024

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education.

: Elbow contracture is a common complication post-elbow trauma, the biomechanical environment after anterior capsule injury was complex. This study aimed to use a finite element model to investigate the biomechanical environment within elbow capsule and its surrounding tissues at various stages after anterior capsule injury. : A finite element model of the elbow joint, incorporating muscle activation behavior, was developed to simulate elbow flexion under normal condition (no injury) and at 2, 4, 6 and 8 weeks following anterior joint capsular injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!