Comparative investigations of bone regeneration performance for calcium sulfate hemihydrate (CaSO(4).(1/2)H(2)O; CSH) only and CSH with mineralized collagen are reported in this article. The mineralized collagen is the nanohydroxyapatite/collagen (nHAC). The investigations included biocompatibility in vitro and performance of bone repair in vivo. Quantitative and qualitative biocompatibility assays with bone stromal stem cells were performed. A critical box-shaped defect model in the mandible of the rabbit was used to evaluate the bone-remodeling ability of CSH and nHAC/CSH. Results in vitro indicated that the nHAC/CSH significantly improved bioactivity compared with that of CSH, especially in promoting cell adhesion. Further, a higher bone remodeling activity was observed around nHAC/CSH composite than the CSH, especially at the early stage of remodeling. This result means that nHAC/CSH could cause an earlier accelerator and better osseointegration for bone repair than CSH only.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2009.0669DOI Listing

Publication Analysis

Top Keywords

mineralized collagen
12
performance bone
8
bone regeneration
8
calcium sulfate
8
sulfate hemihydrate
8
bone repair
8
bone
6
csh
6
improvement performance
4
regeneration calcium
4

Similar Publications

Dynamic-Cross-Linked, Regulated, and Controllable Mineralization Degree and Morphology of Collagen Biomineralization.

J Funct Biomater

November 2024

Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China.

The cross-linking process of collagen is one of the more important ways to improve the mineralization ability of collagen. However, the regulatory effect of dynamic cross-linking on biomineralization in vitro remains unclear. Dynamic-cross-linked mineralized collagen under different cross-linking processes, according to the process of cross-linking and mineralization of natural bone, was prepared in this study.

View Article and Find Full Text PDF

Objectives: Glucocorticoid cosecretion is more common in primary aldosteronism (PA) than previously thought. Chronic subtle cortisol excess in patients with mild autonomous cortisol secretion (MACS) negatively affects bone health. This study aimed to evaluate the impact of MACS on bone density and turnover markers in PA patients.

View Article and Find Full Text PDF

Objective: To determine the structure of abnormalities of bone tissue and substantiate the management tactics inacute lymphoblastic leukemia (ALL) pediatric patients and in children with no oncohematological disorders, livingin radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 220) living in RCT were the study participants i.e.

View Article and Find Full Text PDF

Histological Study of Skin Structures From Selected Body Areas in the Varanus komodoensis.

J Morphol

January 2025

Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.

The skin of the Komodo dragon (Varanus komodoensis) is covered by a form of armour formed mainly of scales, which often co-occur with osteoderms. Scales are keratinized, non-mineralized structures in the uppermost layer of the epidermis that are in contact with each other to form a system in which individual scales are isolated from each other by a softer skin fold zone. In the Varanus, the surface of the scales is flat and smooth (thoracic limb, abdomen, and tail areas), domed and smooth (head area) or domed with conical ornamentation (dorsal surface, pelvic limb-dorsal surface areas).

View Article and Find Full Text PDF

Exogenous bone sialoprotein improves extraction socket healing in ibsp knockout and wild-type mice.

Bone

December 2024

Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA. Electronic address:

Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!