Object: The authors conducted a study to elucidate the relationship between the flow patterns and the formation of aneurysms at the bifurcation of the basilar artery (BA).

Methods: Six isolated, transparent vertebrobasilar arterial systems were prepared from humans postmortem, and flow patterns and velocity distributions were studied in detail using flow visualization and cinemicrographic techniques.

Results: The authors found that if the diameters of 2 vertebral arteries (VAs) were nearly equal and they formed a symmetrical inverted Y-shaped junction with the BA, the BA flow was also symmetrical. The fluid elements that flowed into the BA from 2 VAs traveled almost parallel to the vessel wall of the BA without mixing with each other, and then they flowed out through ipsilateral superior cerebellar and posterior cerebral arteries. In contrast to this, if the diameters of 2 VAs were very different or the BA was badly bent, the BA flow was disturbed as a result of the formation of swirling and secondary flows. The approaching velocity profile at the BA's terminal bifurcation was flattened if the inverted Y-junction was symmetrical, and it was sharpened if the junction was asymmetrical. Thus, in the latter case, fluid elements impinged on the vessel wall around the flow divider of the bifurcation with much larger velocities and, hence, larger kinetic energy, compared with the case of a symmetrical inverted Y-junction, exerting high fluid pressures, wall shear stresses, and wall tensions on the vessel wall there.

Conclusions: The symmetrical structure of the inverted Y-junction in a normal vertebrobasilar arterial system provides a flattened approaching velocity profile at the terminal bifurcation of the BA, lowering the hemodynamic stresses (pressure, tension, and shear stress) exerted on the wall of the bifurcation. This may account for the relatively low incidence of aneurysm formation at this site.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2010.1.JNS09575DOI Listing

Publication Analysis

Top Keywords

flow patterns
12
vertebrobasilar arterial
12
vessel wall
12
inverted y-junction
12
patterns velocity
8
velocity distributions
8
arterial system
8
symmetrical inverted
8
fluid elements
8
approaching velocity
8

Similar Publications

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing.

View Article and Find Full Text PDF

Experimental measurements of particle deposition in the human nasal airway.

Int J Pharm

January 2025

School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.

Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness.

View Article and Find Full Text PDF

Effects of Electroacupuncture Per-Conditioning at Huantiao on Motor Function Recovery in Acute Cerebral Ischemia Mice.

Physiol Behav

January 2025

Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:

Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.

Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.

View Article and Find Full Text PDF

Atherogenesis is prone in medium and large-sized vessels, such as the aorta and coronary arteries, where hemodynamic stress is critical. Low and oscillatory wall shear stress contributes significantly to endothelial dysfunction and inflammation. Murray's law minimizes energy expenditure in vascular networks and applies to small arteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!