Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200905827DOI Listing

Publication Analysis

Top Keywords

dynamers solid-liquid
4
solid-liquid interface
4
interface controlling
4
controlling reversible
4
reversible assembly/reassembly
4
assembly/reassembly process
4
process highly
4
highly ordered
4
ordered supramolecular
4
supramolecular guanine
4

Similar Publications

Shear-induced rotation enhances protein adsorption.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Theories predicted that shear promotes desorption, but due to the presence of factors such as aggregation effects, it is difficult to observe how shear influences the adsorption and desorption of individual protein molecules. In this study, we employed high-throughput single-molecule tracking and molecular dynamics simulations to investigate how shear flow affects the adsorption kinetics of plasma proteins (including human serum albumin, immunoglobulin G, and fibrinogen) at solid-liquid interfaces. Over the studied shear rate range of 0 - 10 s, shear stress did not trigger the protein desorption.

View Article and Find Full Text PDF

Radionuclide sorption dynamics in the Rhone River: Experimental and modelling approach.

J Environ Radioact

January 2025

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/STAAR/LRTA, PSE-ENV/SPDR/LT2S, Saint-Paul-lez-Durance, F-13115, France. Electronic address:

The transfer of radionuclides discharged into rivers by nuclear facilities are conditioned by their solid/liquid fractionation, commonly represented by an equilibrium approach using the distribution coefficient K. This coefficient, largely used in modeling, assumes an instantaneous and completely reversible reaction. However, such assumptions are rarely verified.

View Article and Find Full Text PDF

Nucleation of multicomponent systems is a pervasive phenomenon in nature and is pertinent to a diverse array of scientific and industrial challenges. The nucleation mechanisms of immiscible multicomponent systems remain unclear. Here, gas hydrate is employed as a model system to study the nucleation of multicomponent systems.

View Article and Find Full Text PDF

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!