Nonsteroidal anti-inflammatory drugs (NSAIDs) are highly effective drugs that inhibit pain and inflammation, and perhaps due to the role of inflammation in the underlying etiology, NSAIDs have also demonstrated efficacy in reducing a patient's risk of developing a number of cancers and neurological diseases (e.g. Alzheimer's disease). The utility of these powerful drugs is limited due to their gastrointestinal (GI) side-effects, notably peptic ulceration and GI bleeding which is briefly reviewed here. We also describe the barrier property of the GI mucosa and how it is affected by NSAIDs, as it is our position that disruption of the surface barrier is an important component in the drugs' pathogenesis, in addition to selective inhibition of COX-2, which has proven to be problematic. We also discuss current alternative approaches being taken to mitigate the GI side-effects of NSAIDs, including developing combination drugs where NSAIDs are packaged with inhibitors of HCl secretion such as proton pump inhibitors or H2-receptor antagonists. We then present the rationale for the development of the PC associated NSAID technology which came out of our observation that the mammalian gastric mucosa has hydrophobic, nonwettable properties that provides a barrier to luminal acid, and the role of phospholipids and specifically phosphatidylcholine (PC) in this barrier property. In the last section we review the development of our current lipid-based PC-NSAID formulations and our encouraging preclinical and clinical observations validating their GI safety and therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1358/dot.2009.45.12.1441075 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.
Background: Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations.
Objectives: This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility.
Methods: The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures.
Pharmaceuticals (Basel)
November 2024
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Embryotox Center of Clinical Teratology and Drug Safety in Pregnancy, Augustenburger Platz 1, 13353 Berlin, Germany.
Paracetamol and non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used during pregnancy. Due to their fetotoxicity, NSAIDs are contraindicated during the third trimester. There is ongoing controversy about the extent to which NSAIDs may cause cardiovascular and renal impairment in the fetus earlier in the second trimester.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Chemistry, Brno University of Technology, Purkyňova 118/464, 612 00 Brno, Czech Republic.
The presence of pharmaceuticals in nature systems poses a threat to the environment, plants, animals, and, last but not least, human health. Their transport in soils, waters, and sediments plays important roles in the toxicity and bioavailability of pharmaceuticals. The mobility of pharmaceuticals can be affected by their interactions with organic matter and other soil and water constituents.
View Article and Find Full Text PDFMolecules
December 2024
Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
The limited water solubility of active compounds remains a significant challenge for efficient dermal drug delivery, particularly for BCS class IV drugs such as curcumin. This study aimed to enhance curcumin's dermal penetration using two strategies: extracellular vesicles (EVs) and plantCrystals derived from soybeans. EVs were isolated using classical methods.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
Nine manganese(II) complexes with a series of non-steroidal anti-inflammatory drugs (namely sodium diclofenac, diflunisal, flufenamic acid, sodium meclofenamate, mefenamic acid, and tolfenamic acid) were prepared in the presence of diverse nitrogen donors, i.e., pyridine, 1,10-phenanthroline, 2,2'-bipyridine and neocuproine, as co-ligands and were characterized with spectroscopic techniques and single-crystal X-ray crystallography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!