A spectral remote sensing method for recovering the temperature distribution in semitransparent solids from remotely sensed spectral emission data is studied. An analytical model that relates the emerging spectral intensity from a plane layer of solid heated by an external radiation source to the temperature distribution, spectral radiation properties, radiation characteristics of the interfaces of the solid, and the source is formulated. The temperature profile is expressed in the form of a finite series of Legendre polynomials; and the coefficients are obtained using an optimization scheme that, by iteratively solving the expressions for emerging intensity, reconstructs the distribution that best fits the spectral emission data. The validity and accuracy of the remote sensing method is evaluated by comparing the recovered temperature with independent measurements in two different experiments; one using surface thermocouples only and the other a Mach-Zehnder interferometer. Experimental results are reported for PPG clear float glass and Corning Code 7940 fused silica using a Perkin-Elmer spectrometer and Barnes Spectralmaster radiometer to measure the emerging spectral radiant energy. For clear float glass, the recovered temperatures were a maximum of 1.5% higher than those measured with surface thermocouples. For fused silica, the linear recovered and interferometrically measured temperature profiles agreed well, with the maximum deviation never exceeding approximately 2% up to about 1000 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.14.000428 | DOI Listing |
ACS Nano
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Alternating- and direct-current (ADC) bipolar electropolymerization (EP) offers an efficient and scalable approach for the lateral synthesis of conjugated macromolecules, enabling the simultaneous polymerization and deposition of large conducting polymer films with intriguing fractal-like ramified topographies onto arbitrary insulating substrates under remote control. In this study, we presented the remote synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT):anion sensing films on a plastic substrate, aimed at their use in flexible nitrogen dioxide (NO) gas sensors. Notably, the PEDOT:ClO films exhibited excellent gas-sensing characteristics, with a sensitivity of 54.
View Article and Find Full Text PDFTalanta
January 2025
College of Science, Nanjing Forestry University, Nanjing, 210037, China. Electronic address:
Organic field-effect transistors (OFETs) integrated with commercial transistors are promising sensing platforms characterized by enhanced device uniformity, functional diversity, and electrical output stability. Aptamers with charged backbones and a high affinity for target molecules are anticipated to mitigate the limitations imposed by Debye screening in physiological environments with high ionic strength, thereby facilitating specific biological recognition in complex surroundings. This study presents two reliable OFET aptasensors for vascular endothelial growth factor (VEGF) and offers a systematic comparison of their performance.
View Article and Find Full Text PDFSci Rep
January 2025
Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.
Various modelling techniques are available to understand the temporal and spatial variations of the phenology of species. Scientists often rely on correlative models, which establish a statistical relationship between a response variable (such as species abundance or presence-absence) and a set of predominantly abiotic covariates. The choice of the modeling approach, i.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
LMFE, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000, Marrakesh, Morocco.
In the last decades, natural and anthropogenic pressures have caused observable changes in the argan landscape despite its significance in Morocco. Remote sensing data can be used to monitor these changes over time and provide information on vegetation health and land cover changes. This study assesses the performance of supervised methods (support vector machine, maximum likelihood, and minimum distance) and unsupervised classification method (Isodata) for mapping the argan forest in the Smimou area of Essaouira province using remote sensing data from Landsat-5 and Landsat-8 (1985 and 2019).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Miklukho-Maklaya Street, 117198, Moscow, Russia.
Globally, agricultural lands are among the top emitters of greenhouse gases (GHGs), responsible for over 20% of total greenhouse gas (GHG) emissions. Climatic conditions, an acute challenge in sub-Saharan Africa (SSA), where access to mitigation technologies remains limited, have heavily influenced these lands. This study explores GHG contributions from crop production and their devastating and deteriorating impacts on the economy and environment and proposes a sustainable solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!