We describe the design, construction, alignment, and calibration of a photometric ellipsometer of the rotating-analyzer type. Data are obtained by digital sampling of the transmitted flux with an analog-to-digital converter, followed by Fourier transforming of the accumulated data with a dedicated minicomputer. With an operating mechanical rotation frequency of 74 Hz, a data acquisition cycle requires less than 7 msec. The intrinsic precision attainable is high because precision is limited only by shot noise or intrinsic source instabilities, even when relatively weak continuum lamps are used as light sources. Precision may be improved by accumulating the data for consecutive cycles at a fixed wavelength. The system allows complex reflectance ratios to be determined as continuous functions of wavelength from the near infrared to the near ultraviolet spectral range. Data reduction programs can be modified to calculate complex refractive index or dielectric function spectra, or film thicknesses and refractive indices, as well as the usual ellipsometric parameters tanpsi, cosDelta.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.14.000220DOI Listing

Publication Analysis

Top Keywords

high precision
8
data
5
precision scanning
4
scanning ellipsometer
4
ellipsometer describe
4
describe design
4
design construction
4
construction alignment
4
alignment calibration
4
calibration photometric
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs).

View Article and Find Full Text PDF

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.

View Article and Find Full Text PDF

Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.

Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!