The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e3283377445DOI Listing

Publication Analysis

Top Keywords

forced swimming
20
estradiol fluoxetine
16
swimming stress
12
tryptophan hydroxylase
8
ovariectomized rats
8
swimming test
8
dorsal median
8
median raphe
8
integrated optical
8
optical density
8

Similar Publications

Wurmb is known to contain large amounts of polyphenols and flavonoids with antioxidative and anti-inflammatory effects. However, the biological and physiological functions of have not been scientifically investigated. Thus, we investigated the immunomodulatory effect of hot water extract (YSK-N) in mice using an immune compromised model established by forced swimming (FS).

View Article and Find Full Text PDF

Unlabelled: The association of the pathogenesis of neurodegenerative diseases, depression, anxiety, and cognitive disorders with neurotrophin-3 deficiency determines the prospect of creating drugs with a similar mechanism of action. Since the use of full-length NT-3 is limited by unsatisfactory pharmacokinetic properties, the creation of low-molecular mimetics of neurotrophin-3 that are active when administered systemically is relevant. The Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies has created a dimeric dipeptide mimetic of the 4th loop of NT-3, hexamethylenediamide bis-(N-γ-oxybutyryl-L-glutamyl-L-asparagine) with the laboratory code GTS-302, which activates TrkC and TrkB receptors.

View Article and Find Full Text PDF

Chronic restraint stress affects the diurnal rhythms of gut microbial composition and metabolism in a mouse model of depression.

BMC Microbiol

January 2025

Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.

Background: Depression is a common mental disorder accompanied by gut microbiota dysbiosis, which disturbs the metabolism of the host. While diurnal oscillation of the intestinal microbiota is involved in regulating host metabolism, the characteristics of the intestinal microbial circadian rhythm in depression remain unknown. Our aim was to investigate the microbial circadian oscillation signature and related metabolic pathways in a mouse model with depression-like behaviours.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder that occurs after an individual has witnessed or experienced a major traumatic event. Emotional contagion seems to play an important role in witnessing trauma, highlighting the importance of understanding the neurobiological consequences of psychological or emotional stress and its impact on the individual's mental health. Therefore, understanding the relationship between emotional contagion and PTSD susceptibility and the abnormal neurobiological and behavioral changes behind it could help find effective molecular treatment targets.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) is a complex psychiatric condition that emerges following exposure to trauma and significantly affects daily functioning. Current research is focused on identifying effective treatments for PTSD. Advances in bioinformatics provide opportunities to elucidate the underlying mechanisms of PTSD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!