Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We use opossums Monodelphis domestica to study the development of mammalian motor systems. The immature forelimbs of the newborn perform rhythmic and alternating movements that are likely under spinal control. The hindlimbs start moving in the second week. Chemical synapses are scant in the spinal enlargements of neonatal opossums and the presence of electrochemical synapses has not been evaluated in this species or in other marsupials. As a first step aiming at evaluating the existence of such synapses in the neonatal spinal cord, we have investigated the presence of the exclusively neuronal gap junction protein connexin36 (Cx36) by immunohistochemistry in light microscopy. At birth, Cx36 immunoreactivity is moderate in the presumptive gray matter in both enlargements. Thereafter, it decreases gradually, except in the superficial dorsal horn where it increases to a plateau between P10 and P20. Cx36 labeling is detected in the presumptive white matter at birth, but then decreases except in the dorsal part of the lateral funiculus, where it is dense between P10 and P20. Cx36 has become virtually undetectable by P52. The presence of Cx36 in the spinal enlargements of postnatal opossums suggests that neurons might be linked by gap junctions at a time when chemical synapses are only beginning to form. The greater abundance of Cx36 observed transiently in the superficial dorsal horn suggests a stronger involvement of this protein in spinal sensory systems than in direct motor control of the limbs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000282173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!