The wiring of the nervous system arises from extensive directional migration of neuronal cell bodies and growth of processes that, somehow, end up forming functional circuits. Thus far, this feat of biological engineering appears to rely on sequences of pathfinding decisions upon local cues, each with little relationship to the anatomical and physiological outcome. Here, we uncover a straightforward cellular mechanism for circuit building whereby a neuronal type directs the development of its future partners. We show that visceral afferents of the head (that innervate taste buds) provide a scaffold for the establishment of visceral efferents (that innervate salivatory glands and blood vessels). In embryological terms, sensory neurons derived from an epibranchial placode--that we show to develop largely independently from the neural crest--guide the directional outgrowth of hindbrain visceral motoneurons and control the formation of neural crest-derived parasympathetic ganglia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836672 | PMC |
http://dx.doi.org/10.1073/pnas.0910213107 | DOI Listing |
Ann Anat
October 2024
Institute of Anatomy, Neuroanatomy, Medical Faculty UKB, University of Bonn, Bonn, Germany. Electronic address:
Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro.
View Article and Find Full Text PDFJ Neurosci
July 2024
Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown.
View Article and Find Full Text PDFDev Biol
February 2024
Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA. Electronic address:
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia.
View Article and Find Full Text PDFBraz J Biol
May 2021
Taif University, College of Sciences, Department of Biology, Taif, Saudi Arabia.
The organization of the roots, ganglia and the peripheral distribution of the cranial nerves of the fully formed embryos of Oreochromis niloticus are examined in the transverse serial sections. These nerves carry fibers, which were also analyzed. The results of this study demonstrated that the glossopharyngeal nerve originates by means of only one root, which leaves the cranium through the glossopharyngeal foramen.
View Article and Find Full Text PDFNeurosci Lett
January 2021
Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA. Electronic address:
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!