A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, sigmaE. | LitMetric

Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, sigmaE.

Proc Natl Acad Sci U S A

Department of Microbiology and Immunology, University of California, 600 16th Street, San Francisco, CA 94158, USA.

Published: February 2010

Sequenced bacterial genomes provide a wealth of information but little understanding of transcriptional regulatory circuits largely because accurate prediction of promoters is difficult. We examined two important issues for accurate promoter prediction: (1) the ability to predict promoter strength and (2) the sequence properties that distinguish between active and weak/inactive promoters. We addressed promoter prediction using natural core promoters recognized by the well-studied alternative sigma factor, Escherichia coli sigma(E), as a representative of group 4 sigmas, the largest sigma group. To evaluate the contribution of sequence to promoter strength and function, we used modular position weight matrix models comprised of each promoter motif and a penalty score for suboptimal motif location. We find that a combination of select modules is moderately predictive of promoter strength and that imposing minimal motif scores distinguished active from weak/inactive promoters. The combined -35/-10 score is the most important predictor of activity. Our models also identified key sequence features associated with active promoters. A conserved "AAC" motif in the -35 region is likely to be a general predictor of function for promoters recognized by group 4 sigmas. These results provide valuable insights into sequences that govern promoter strength, distinguish active and inactive promoters for the first time, and are applicable to both in vivo and in vitro measures of promoter strength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840333PMC
http://dx.doi.org/10.1073/pnas.0915066107DOI Listing

Publication Analysis

Top Keywords

promoter strength
20
strength function
8
promoters
8
function promoters
8
escherichia coli
8
alternative sigma
8
sigma factor
8
promoter
8
promoter prediction
8
distinguish active
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!