Optimizing Au-nanoprobes for specific sequence discrimination.

Colloids Surf B Biointerfaces

CIGMH, Departamento de Ciências da Vida, Universidade Nova de Lisboa, Caparica, Portugal.

Published: May 2010

Gold nanoparticles functionalized with thiol-oligonucleotides are ideal platforms for detection of specific DNA sequences. Here we evaluate the effect of single base mismatches in hybridization efficiency according to the position of the mismatch, base pairing combination and thiol-oligonucleotide density in terms of specificity and efficiency of target recognition. Hybridization efficiency and single-nucleotide polymorphism discrimination at room temperature is maximized at a density of 83+/-4 thiol-oligonucleotides per 13.5 nm gold nanoparticle (24 pmol/cm(2)), and when the mismatch is localized at the 3'-end of the Au-nanoprobe, i.e. away from the gold nanoparticle surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2010.01.007DOI Listing

Publication Analysis

Top Keywords

hybridization efficiency
8
gold nanoparticle
8
optimizing au-nanoprobes
4
au-nanoprobes specific
4
specific sequence
4
sequence discrimination
4
discrimination gold
4
gold nanoparticles
4
nanoparticles functionalized
4
functionalized thiol-oligonucleotides
4

Similar Publications

As the world recovered from the coronavirus, the emergence of the monkeypox virus signaled a potential new pandemic, highlighting the need for faster and more efficient diagnostic methods. This study introduces a hybrid architecture for automatic monkeypox diagnosis by leveraging a modified grey wolf optimization model for effective feature selection and weighting. Additionally, the system uses an ensemble of classifiers, incorporating confusion based voting scheme to combine salient data features.

View Article and Find Full Text PDF

Meta-heuristic optimization algorithms are widely applied across various fields due to their intelligent behavior and fast convergence, but their use in optimizing engine behavior remains limited. This study addresses this gap by integrating the Design of Experiments-based Response Surface Methodology (RSM) with meta-heuristic optimization techniques to enhance engine performance and emissions characteristics using Tectona Grandi's biodiesel with Elaeocarpus Ganitrus as an additive. Advanced Machine Learning (ML) models, including Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), and Random Trees (RT), were employed for predictive analysis, with ANN outperforming RSM in accuracy.

View Article and Find Full Text PDF

The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.

View Article and Find Full Text PDF

Unraveling the role of chitosan in enhancing the photodegradation of ciprofloxacin by using chitosan-titanates composites: Experimental and in-silico approach.

J Environ Manage

January 2025

División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), 78216, San Luis Potosí, SLP, Mexico. Electronic address:

A hybrid composite (inorganic-organic) based on chitosan-functionalized hydrogen titanate nanotubes (TiCH) was synthesized by the hydrothermal method assisted by microwave, during 5h at 150 °C. The in-silico analysis determined the possible chitosan chemical adsorption models after calculating the Gibbs energies of their HOMO-LUMO orbitals. The TGA analysis confirmed the stability and helped to obtain the real functionalization degrees for the 3TiCH (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!