Modeling provides an attractive approach for the design of phased array ultrasound transducers for hyperthermia. However, measurements on physical transducers reveal differences from the idealized field profiles predicted by simulation. In this paper we report a method of analyzing the origins of these differences. The measured performance of a 15-element sparse phased array is described and compared with simulated fields calculated using the point source method. It highlighted two notable differences: First, that the focal region was located closer to the surface of the physical transducer than in the simulated fields; and second, that numerous intensity maxima were present between the surface of the transducer and the focal zone in the experimental data, but not in the simulated fields. We identified six factors that could potentially affect the field but were not taken into account by the default simulations, and we performed a sensitivity analysis on these: (i) Variation in the amplitude of the output from each element, (ii) the presence of square-wave harmonics in the drive signals, (iii) nonpistonlike vibration of elements, (iv) quantization of the applied phases, (v) errors in the spatial positioning of each element; and (vi) interelement cross-coupling. Both the independent impact of each factor and the interactions between multiple factors were analyzed by using a full-factorial experimental design composed of 64 (2(6)) simulations. The results indicated that nonpistonlike motion of elements is likely to be the primary cause of differences between the measured and modelled fields. Determination of the precise vibrational modes of elements in an array is complex and would require full finite element analysis. However, the simple vibrational mode considered within the present work, corresponding to the addition of a surface Rayleigh wave originating at the element center and propagating radially, produced simulation results that were in good agreement with the measured data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.11.010 | DOI Listing |
An Acad Bras Cienc
January 2025
University of Technology, Department of Control and System Engineering, Baghdad, 10066, Iraq.
Latency in flux observation has an adverse effect on the performance of observer-based field-oriented speed control for three-phase induction motor (IM). The reduction of the convergent rate of estimation errors could improve the performance of speed-controlled IM based on flux observers. The main contribution is to design a fast convergent flux observer, which provides bounded estimation error immediately after one instant of motor startup.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
Liquid crystal elastomers (LCEs) exhibit reversible shape morphing behavior when cycled above their nematic-to-isotropic transition temperature. During extrusion-based 3D printing, LCE inks are subjected to coupled shear and extensional flows that can be harnessed to spatially control the alignment of their nematic director along prescribed print paths. Here, we combine experiment and modeling to elucidate the effects of ink composition, nozzle geometry, and printing parameters on director alignment.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic.
Molecular dynamics (MD) simulations are an important and well-established tool for investigating RNA structural dynamics, but their accuracy relies heavily on the quality of the employed force field (). In this work, we present a comprehensive evaluation of widely used pair-additive and polarizable RNA s using the challenging UUCG tetraloop (TL) benchmark system. Extensive standard MD simulations, initiated from the NMR structure of the 14-mer UUCG TL, revealed that most s did not maintain the native state, instead favoring alternative loop conformations.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFJ Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!