Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myocardial failure is associated with increased oxidative stress and abnormal excitation-contraction coupling characterized by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores and a reduction in Ca(2+)-transient amplitude. Little is known about the mechanisms whereby oxidative stress affects Ca(2+) handling and contractile function; however, reactive thiols may be involved. We used an in vitro cardiomyocyte system to test the hypothesis that short-term oxidative stress induces SR Ca(2+) depletion via redox-mediated regulation of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) and the sodium-Ca(2+) exchanger (NCX) and that this is associated with thiol oxidation. Adult rat ventricular myocytes paced at 5 Hz were superfused with H(2)O(2) (100 microM, 15 min). H(2)O(2) caused a progressive decrease in cell shortening followed by diastolic arrest, which was associated with decreases in SR Ca(2+) content, systolic [Ca(2+)](i), and Ca(2+)-transient amplitude, but no change in diastolic [Ca(2+)](i). H(2)O(2) caused reciprocal effects on the activities of SERCA (decreased) and NCX (increased). Pretreatment with the NCX inhibitor KB-R7943 before H(2)O(2) increased diastolic [Ca(2+)](i) and mimicked the effect of SERCA inhibition with thapsigargin. These functional effects were associated with oxidative modification of thiols on both SERCA and NCX. In conclusion, redox-mediated SR Ca(2+) depletion involves reciprocal regulation of SERCA and NCX, possibly via direct oxidative modification of both proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847633 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!