Determination of ideal offset for spatially offset Raman spectroscopy.

Appl Spectrosc

The Institute of Optics, University of Rochester, Rochester, New York 14627, USA.

Published: January 2010

A key design parameter in spatially offset Raman spectroscopy (SORS) is the choice of offset distance between the illumination and collection areas. To investigate this choice, we performed SORS measurements on a simple two-layer chemical phantom. We show that while the SORS ratio, or the ratio of signal from the bottom layer to the top layer, monotonically increases with spatial offset, the signal-to-noise ratio (SNR) does not. Specifically, we show that there exists a specific spatial offset that yields the best SNR for signal originating in the bottom layer of a two-layer sample. We also show that this SNR-optimal offset depends upon the strength of the particular Raman band. This work presents the considerations that should be taken into account when designing optical probes for use in SORS.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370210790571936DOI Listing

Publication Analysis

Top Keywords

spatially offset
8
offset raman
8
raman spectroscopy
8
bottom layer
8
spatial offset
8
offset
7
determination ideal
4
ideal offset
4
offset spatially
4
spectroscopy key
4

Similar Publications

Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.

Rev Sci Instrum

January 2025

Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.

The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.

View Article and Find Full Text PDF

Enhancing mass vaccination programs with queueing theory and spatial optimization.

Front Public Health

January 2025

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, United States.

Background: Mass vaccination is a cornerstone of public health emergency preparedness and response. However, injudicious placement of vaccination sites can lead to the formation of long waiting lines or , which discourages individuals from waiting to be vaccinated and may thus jeopardize the achievement of public health targets. Queueing theory offers a framework for modeling queue formation at vaccination sites and its effect on vaccine uptake.

View Article and Find Full Text PDF

A Quantitative Chemometric Study of Pharmaceutical Tablet Formulations Using Multi-Spectroscopic Fibre Optic Probes.

Pharmaceuticals (Basel)

December 2024

College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.

Two fibre optic probes were custom designed to perform Raman and near-infrared spectroscopic measurements. Our long-term objective is to develop a non-destructive tool able to collect data in hard-to-access locations for real-time analysis or diagnostic purposes. This study evaluated the quantitative performances of Probe A and Probe B using model pharmaceutical tablets.

View Article and Find Full Text PDF

Will vegetation restoration affect the supply-demand relationship of water yield in an arid and semi-arid watershed?

Sci Total Environ

January 2025

Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.

Natural processes, combined with human activities, determine the inherent quality of regional water supply and demand. However, the interaction between artificial vegetation restoration and water supply-demand dynamics remains insufficiently understood, particularly in arid and semi-arid regions. This study focuses on the Jinghe River Basin (JRB) in the central Loess Plateau, aiming to investigate the changes in supply and demand of ecosystem water yield services and analyze factors affecting the water supply-demand relationship during the vegetation restoration, using the InVEST model, scenario analysis, and the Geodetector.

View Article and Find Full Text PDF

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!