Pluripotent stem cells would have great potential in cell therapies and drug development when genetically matched with the patient; thus, histocompatible cells could be used in transplantation therapy or as a source of patient-specific cells for drug testing. Pluripotent embryonic stem cells (ESCs)-generated via somatic cell nuclear transfer (SCNT) or parthenogenesis (pESC)-are potential sources of histocompatible cells and tissues for transplantation. Earlier studies used the piezoelectric microinjection (PEM) technique for nuclear transfer (NT) in mouse. No specific studies examined zona-free (ZF) NT as an alternative NT method to generate genetically matched ESCs of a nuclear donor. In this study, we compared the efficiency of nuclear transfer-derived ESC (ntESC) line establishment from ZF-NT, ZF-parthenogenetic (PGA), and ZF-fertilized embryos with that of the PEM-NT method. Different nuclei donor cells [cumulus, ESC, and mouse embryonic fibroblast (MEF)] were used and the efficiency of ntESC derivation was investigated, along with their in vitro characterization. The ZF-NT method's efficiency was higher than that of the PEM-NT using cumulus cells. When ESCs and cumulus cells were used as nuclear donor cells, they resulted in significantly higher ZF-NT-derived ntESC line establishment rates compared to MEF cells. In conclusion, the nuclear donor cell type significantly affected the efficiency of ntESC line establishment, and the ZF-NT method was efficient to establish pluripotent ntESC lines.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cell.2009.0040DOI Listing

Publication Analysis

Top Keywords

nuclear transfer
12
nuclear donor
12
ntesc establishment
12
cells
10
mouse embryonic
8
embryonic stem
8
stem cells
8
genetically matched
8
histocompatible cells
8
establishment zf-nt
8

Similar Publications

Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly.

Braz J Microbiol

December 2024

Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.

Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions.

View Article and Find Full Text PDF

Altered Nigral Amide Proton Transfer Imaging Signal Concordant With Motor Asymmetry in Parkinson's Disease: A Multipool CEST MRI Study.

NMR Biomed

February 2025

Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.

View Article and Find Full Text PDF

Nitrogen vacancy mediated g-CN/BiVO Z-scheme heterostructure nanostructures for exceptional photocatalytic performance.

Environ Res

December 2024

School of Materials and Chemistry, Analytical and Testing Center, Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

In this work, a novel V-g-CN/BiVO (V-CN/BVO) Z-scheme heterojunction photocatalyst was formed by introducing nitrogen vacancies (V) and constructing heterojunction, which is able to efficiently degrade the representative contaminant rhodamine B (RhB) upon exposure to visible-light, resulting in an outstanding degradation rate of 98.91% of RhB within 30 min. This photocatalyst exhibits catalytic universality and allows the degradation of methylene blue (MB, 97.

View Article and Find Full Text PDF

A soil-vegetation-atmospheric transfer (SVAT) model for radon and its progeny is presented to improve process-level understanding of the role of forests in taking-up radionuclides from soil radon outgassing. A dynamic system of differential equations couples soil, tree (Scots pine) and atmospheric processes, treating the trees as sources, sinks and conduits between the atmosphere and the soil. The model's compartments include a dual-layer soil column undergoing hydrological and solute transport, the tree system (comprising roots, wood, litter, and foliage) and the atmosphere, with physical processes governing the transfers of water and radon products between these compartments.

View Article and Find Full Text PDF

Objective: Scientific justification of the methodology for calculating radiation internal doses from 137Cs and 134Cs intake for residents of Ukrainian settlements radioactively contaminated as a result of the Chornobyl (Chernobyl) accident in which measurements of incorporated radiocesium isotopes in humans using whole-body counters (WBC) were not carried out.

Materials And Methods: The paper presents a new methodology for reconstructing doses due to internal irradiation from Chornobyl fallout for both surface (in 1986) and root (in 1987-2023) contamination of vegetation with 137Cs and 134Cs and their transfer into the human body. The methodology for calculating the dose due to surface contamination of vegetation was based on the theoretical model of the transfer of radiocesium isotopes through the food chain with further adjustment of this model to the results of WBC measurements carried out between 15 July and 31 December 1986.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!