Besides material biocompatibility, it is possible to infer that both vaginal and urethral erosion rates associated with sub-urethral synthetic slings may be related to the mechanical properties of the meshes and also to their other properties. With the aim of understanding what distinguishes the different polypropylene meshes, used for the treatment of the stress urinary incontinence (SUI), their structural and thermal properties were investigated. Five different mesh types were tested (Aris, Auto Suture, Avaulta, TVTO and Uretex). Differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR) tests were performed. Furthermore, geometry (electron microscope), linear density and relative density (pyknometer) of the meshes were investigated. The meshes are made of the isotactic polypropylene homopolymer. Aris mesh presented the smallest fibre diameter, linear density and the level of crystallinity among all the meshes used for the treatment of the SUI. This study shows that there is a direct relationship between the fibre diameter, linear density, level of crystallinity and flexural stiffness of the polypropylene meshes used for the treatment of the SUI.
Download full-text PDF |
Source |
---|
Ann Chir Plast Esthet
January 2025
Department of Plastic and Burns Pediatric Surgery, Hôpital Armand-Trousseau, AP-HP, 26, avenue du Dr-Arnold-Netter, 75012 Paris, France.
This clinical case report describes the reconstructive management of a child who developed a rare aggressive soft tissue infection - necrotizing fasciitis - complicating varicella skin lesions, with a synthetic dermal regenerative template - NovoSorb Biodegradable Temporizing Matrix - in conjunction with a split thickness meshed skin graft. The scarcity of this clinical case, the need to cover large skin defect promptly while facing infectious and pediatric challenges make it interesting to describe NovoSorb Biodegradable Temporizing Matrix in addition to split thickness meshed skin graft a novel treatment in necrotizing fasciitis of the child. A rapid surgical treatment followed by this reconstructive strategy achieved an acceptable functional and aesthetic result, with timely healing despite the severity and extensive surface area of the infection.
View Article and Find Full Text PDFInt Urogynecol J
January 2025
Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.
Introduction And Hypothesis: Pelvic organ prolapse (POP) impacts women's health and quality of life. Post-surgery complications can be severe. This study uses rat models to replicate sacrocolpopexy and test materials for pelvic support, verifying the 4-week postoperative mortality rate, the mechanical properties of the mesh tissue, and the collagen content.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
The position and orientation of transcranial magnetic stimulation (TMS) coil, which we collectively refer to as coil placement, significantly affect both the assessment and modulation of cortical excitability. TMS electric field (E-field) simulation can be used to identify optimal coil placement. However, the present E-field simulation required a laborious segmentation and meshing procedure to determine optimal coil placement.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Prosthodontics, University of Medicine and Pharmacy "Victor Babes", B-dul Revolutiei 1989, No. 9, 300580 Timisoara, Romania.
Dentistry is steadily evolving along the digital pathway at a constant and sure pace. Intraoral scanners (IOSs) started to enhance the precision and trueness of the restorations, making prosthodontics treatment more predictable. The objective of this study was to compare the trueness and internal fit of the printed provisional veneers for 60 preparations with three different types of finish lines.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier-Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, in which the boundary layer mesh is sized in the streamwise and spanwise directions comparable to WMLES, and the wall-normal mesh is comparable to a RANS simulation without wall functions. A mixing length model is used to prescribe an eddy viscosity in the near-wall region, with the mixing length scale limited based on local mesh size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!