Premature arthritis is a distinct type II collagen phenotype.

Arthritis Rheum

Murdoch Childrens Research Institute, University of Melbourne, and Genetic Health Services Victoria, Parkville, Melbourne, Australia.

Published: May 2010

Mutations in the gene encoding type II collagen (COL2A1) give rise to a spectrum of phenotypes predominantly affecting cartilage and bone. These chondrodysplasias are typically characterized by disproportionately short stature, eye abnormalities, cleft palate, and hearing loss. It is less recognized that mutations in COL2A1 can also present as degenerative joint disease in the absence of any other phenotypic clues. We report 2 Australian families presenting with an isolated arthritis phenotype, segregating as a dominant trait affecting both large and small joints, prior to age 30 years. Sequencing of COL2A1 in the propositi revealed 2 sequence changes resulting in glycine substitutions in the triple-helical domain of type II collagen. We review the increasing evidence implicating COL2A1 mutations in individuals presenting with isolated degenerative joint disease, aiming to alert physicians who assess these patients to this possibility. The importance of finding a COL2A1 mutation in such patients lies in the subsequent ability to accurately assess recurrence risks, offer early (including prenatal) diagnosis, and provide information regarding the natural history of the condition. Most importantly, it enables at-risk individuals to be identified for implementation of preventative strategies (i.e., weight loss, joint-friendly exercise programs) and early ameliorative management of their condition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.27354DOI Listing

Publication Analysis

Top Keywords

type collagen
12
degenerative joint
8
joint disease
8
presenting isolated
8
col2a1
5
premature arthritis
4
arthritis distinct
4
distinct type
4
collagen phenotype
4
phenotype mutations
4

Similar Publications

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.

View Article and Find Full Text PDF

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Objective: Research on the link between inflammatory indicators and markers of bone metabolism is currently lacking, especially the interaction between Procollagen type 1 N-terminal propeptide (P1NP), the β-C-terminal telopeptide of type 1 collagen (β-CTX), and the fibrinogen-to-albumin ratio (FAR). This study intends to fill that knowledge gap by investigating the possible link between inflammatory indicators and bone metabolism.

Methods: This observational study included 718 individuals diagnosed with osteoporotic fractures from Kunshan Hospital Affiliated to Jiangsu University between January 2017 and July 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!