Objective: To investigate the differences in gene expression profiles of adult articular cartilage from patients with Kashin-Beck disease (KBD) versus those with primary knee osteoarthritis (OA).
Methods: The messenger RNA expression profiles of articular cartilage from patients with KBD, diagnosed according to the clinical criteria for KBD in China, were compared with those of cartilage from patients with OA, diagnosed according to the Western Ontario and McMaster Universities OA Index. Total RNA was isolated separately from 4 pairs of the KBD and OA cartilage samples, and the expression profiles were evaluated by Agilent 4x44k Whole Human Genome density oligonucleotide microarray analysis. The microarray data for selected transcripts were confirmed by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) amplification.
Results: For 1.2 x 10(4) transcripts, corresponding to 58.4% of the expressed transcripts, 2-fold changes in differential expression were revealed. Expression levels higher in KBD than in OA samples were observed in a mean + or - SD 6,439 + or - 1,041 (14.6 + or - 2.4%) of the transcripts, and expression levels were lower in KBD than in OA samples in 6,147 + or - 1,222 (14.2 + or - 2.8%) of the transcripts. After application of the selection criteria, 1.85% of the differentially expressed genes (P < 0.001 between groups) were detected. These included 233 genes, of which 195 (0.4%) were expressed at higher levels and 38 (0.08%) were expressed at lower levels in KBD than in OA cartilage. Comparisons of the quantitative RT-PCR data supported the validity of our microarray data.
Conclusion: Differences between KBD and OA cartilage exhibited a similar pattern among all 4 of the pairs examined, indicating the presence of disease mechanisms, mainly chondrocyte matrix metabolism, cartilage degeneration, and apoptosis induction pathways, which contribute to cartilage destruction in KBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.27282 | DOI Listing |
BMC Plant Biol
January 2025
School of Engineering, Dali University, Dali, Yunnan Province, China.
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFChin Med
January 2025
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
BMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!