Transformation of Sinorhizobium meliloti MTCC 100 and Mesorhizobium ciceri TAL 620 by CaCl2 method.

Can J Microbiol

Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad-382481, Gujarat, India.

Published: January 2010

The CaCl2 method, commonly used for transformation of Escherichia coli, was modified and used to develop a simpler and easier transformation method for Rhizobia sp. Two species of Rhizobia, Sinorhizobium meliloti MTCC 100 and Mesorhizobium ciceri TAL 620, were transformed with the 13.2 kb binary vector pGA482. At an optical density of 0.4, the transformation efficiencies in Sinorhizobium meliloti MTCC 100 and Mesorhizobium ciceri TAL 620 were 104 and 103, respectively. Competent cells of Sinorhizobium meliloti MTCC 100 were prepared at different growth intervals and transformed by the same vector. A maximum transformation efficiency of 104 was achieved at an optical density of 0.5.

Download full-text PDF

Source
http://dx.doi.org/10.1139/w09-114DOI Listing

Publication Analysis

Top Keywords

sinorhizobium meliloti
16
meliloti mtcc
16
mtcc 100
16
100 mesorhizobium
12
mesorhizobium ciceri
12
ciceri tal
12
tal 620
12
cacl2 method
8
optical density
8
transformation
5

Similar Publications

In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.

View Article and Find Full Text PDF

Replacement of the essential catalytic aspartate with serine leads to an active form of copper-containing nitrite reductase from the denitrifier Sinorhizobium meliloti 2011.

Biochim Biophys Acta Proteins Proteom

December 2024

Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.

Article Synopsis
  • The study details the characterization of a mutated variant of copper-containing nitrite reductase (SmNirK) from S. meliloti, where the catalytic aspartate (Asp) is replaced with serine (Ser) via site-directed mutagenesis.
  • The D134S variant retains the homotrimer structure and similar T1 electron transfer center to the wild-type, but shows altered electronic properties in the T2 active site, impacting its enzymatic efficiency and pH dependence.
  • EPR studies reveal significant changes in the T2 properties due to the mutation, highlighting the role of T2 ligands in catalysis and suggesting a potential mechanism for electron transfer influenced by the Asp/Ser switch.
View Article and Find Full Text PDF

The phenylpropanoid biosynthesis pathway is involved in the response of plants to stress factors, including microorganisms. This paper presents how free-living strains of rhizobacteria KK5, KK7, KK4, and the symbiotic strain KK13 affect the expression of genes encoding phenylalanine ammonia-lyase (PAL), the activity of this enzyme, and the production of phenolic compounds in . Seedlings were inoculated with rhizobacteria, then at T0, T24, T72, and T168 after inoculation, the leaves and roots were analyzed for gene expression, enzyme activity, and the content of phenolic compounds.

View Article and Find Full Text PDF

The low enoyl-acyl carrier protein reductase activity of FabI2 is responsible for the high unsaturated fatty acid composition in Sinorhizobium meliloti.

BMC Microbiol

December 2024

Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: Sinorhizobium meliloti is noted for its exceptional capacity to produce unsaturated fatty acids (UFAs). Earlier studies have indicated that S. meliloti primarily employs the FabA-FabB pathway for UFA synthesis, however, the mechanisms remain elusive.

View Article and Find Full Text PDF

Microbes display broad diversity in cobamide preferences.

bioRxiv

November 2024

Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, U.S.A.

Cobamides, the vitamin B (cobalamin) family of cofactors, are used by most organisms but produced by only a fraction of prokaryotes, and are thus considered key shared nutrients among microbes. Cobamides are structurally diverse, with multiple different cobamides found in most microbial communities. The ability to use different cobamides has been tested for several bacteria and microalgae, and nearly all show preferences for certain cobamides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!