Na(v)1.7 sodium channels can amplify weak stimuli in neurons and act as threshold channels for firing action potentials. Neurotrophic factors and pro-nociceptive cytokines that are released during development and under pathological conditions activate mitogen-activated protein kinases (MAPKs). Previous studies have shown that MAPKs can transduce developmental or pathological signals by regulating transcription factors that initiate a gene expression response, a long-term effect, and directly modulate neuronal ion channels including sodium channels, thus acutely regulating dorsal root ganglion (DRG) neuron excitability. For example, neurotrophic growth factor activates (phosphorylates) ERK1/2 MAPK (pERK1/2) in DRG neurons, an effect that has been implicated in injury-induced hyperalgesia. However, the acute effects of pERK1/2 on sodium channels are not known. We have shown previously that activated p38 MAPK (pp38) directly phosphorylates Na(v)1.6 and Na(v)1.8 sodium channels and regulates their current densities without altering their gating properties. We now report that acute inhibition of pERK1/2 regulates resting membrane potential and firing properties of DRG neurons. We also show that pERK1 phosphorylates specific residues within L1 of Na(v)1.7, inhibition of pERK1/2 causes a depolarizing shift of activation and fast inactivation of Na(v)1.7 without altering current density, and mutation of these L1 phosphoacceptor sites abrogates the effect of pERK1/2 on this channel. Together, these data are consistent with direct phosphorylation and modulation of Na(v)1.7 by pERK1/2, which unlike the modulation of Na(v)1.6 and Na(v)1.8 by pp38, regulates gating properties of this channel but not its current density and contributes to the effects of MAPKs on DRG neuron excitability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633991PMC
http://dx.doi.org/10.1523/JNEUROSCI.4872-09.2010DOI Listing

Publication Analysis

Top Keywords

sodium channels
16
gating properties
12
mitogen-activated protein
8
drg neuron
8
neuron excitability
8
drg neurons
8
nav16 nav18
8
inhibition perk1/2
8
current density
8
channels
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!