AI Article Synopsis

  • Identifying individuals at risk for chemical-induced liver damage is challenging before exposure, but gene expression analysis of blood samples taken before treatment can help predict susceptibility.
  • The study compared gene expressions in blood samples with the resulting liver damage after exposure to carbon tetrachloride (CCl(4)) using advanced genetic testing methods.
  • Three specific genes (ND6, Trpc6, and Tspan12) were found to be linked to susceptibility, with lower expressions of ND6 and Tspan12 correlating to a higher risk of liver injury from CCl(4), offering a new approach for preventing drug-related liver damage.

Article Abstract

Although the extent of chemical-induced liver injury differs substantially from individual to individual, it is very hard to identify susceptible population priori to chemical exposure. We report here that the gene expression of the blood samples collected predose might identify the susceptible population without actual exposure to hepatotoxicant. The innate gene expressions in the blood samples collected at predose were compared using whole-genome microarray analysis and semiquantitative PCR with the extent of hepatotoxicity following the treatment of a model hepatotoxicant, carbon tetrachloride (CCl(4)) posteriori. The expression of 18 genes was found to innately differ in the blood of the susceptible animals from the resistant to CCl(4)-induced hepatotoxicity. Of these 18 genes, three genes, NADH dehydrogenase subunit 6 (ND6), transient receptor potential cation channel, subfamily C, member 6 (Trpc6), and tetraspanin 12 (Tspan12), were found to be different reproducibly in real-time PCR analysis with independent sets of animals. Of particular note, animals with the low expression level of ND6 and Tspan12 showed significantly higher susceptibility to CCl(4)-induced hepatotoxicity indeed. This study demonstrated that blood gene expression profiling might identify the susceptible individuals to chemical-induced hepatotoxicity without actual chemical exposure, providing a novel and important methodology for the prevention of drug-induced hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfq037DOI Listing

Publication Analysis

Top Keywords

gene expression
12
identify susceptible
12
blood gene
8
susceptible population
8
chemical exposure
8
blood samples
8
samples collected
8
collected predose
8
ccl4-induced hepatotoxicity
8
hepatotoxicity
6

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!