Polystyrene-supported 2-isobutoxy-1-isobutoxycarbonyl-1,2-dihydroquinoline (PS-IIDQ), a polymer-supported covalent coupling reagent, was successfully employed for the first time in the bioconjugation of an example hapten (phytanic acid derivative) to a carrier protein (bovine serum albumin (BSA)) within the context of immunogen preparation for antibody development. The ability of the prepared example phytanic acid derivative-BSA conjugate to bind an anti-phytanic acid antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.12.078DOI Listing

Publication Analysis

Top Keywords

polystyrene-supported 2-isobutoxy-1-isobutoxycarbonyl-12-dihydroquinoline
8
antibody development
8
phytanic acid
8
2-isobutoxy-1-isobutoxycarbonyl-12-dihydroquinoline preparation
4
preparation hapten-protein
4
hapten-protein conjugate
4
conjugate antibody
4
development polystyrene-supported
4
2-isobutoxy-1-isobutoxycarbonyl-12-dihydroquinoline ps-iidq
4
ps-iidq polymer-supported
4

Similar Publications

Development of Monolithic Hyper-Cross-Linked Polystyrene-Supported Ultrasmall Nano-Ag Catalysts for Enhanced NaBH-Mediated Dye Degradation.

Langmuir

December 2024

Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.

Synthesizing catalyst supports with appropriate compositions and structures is crucial for reducing the sizes of metal nanoparticles and enhancing their catalytic activities. In this work, a series of monolithic hyper-cross-linked supports (HCP-CC) with hierarchical pores were synthesized. The monolithic structure facilitated easy operation in catalytic reactions, while the composition and structure of HCP-CC could be tailored simultaneously by utilizing the functional cross-linking agent cyanogen chloride.

View Article and Find Full Text PDF

Head and neck Squamous Cell Carcinoma (HNSCC) is a growing concern worldwide and MAPKAPK2/MK2 (Mitogen-Activated Protein Kinase Activated Protein Kinase 2) is crucially involved in HNSCC progression. Increased disease burden and lacuna of targeted therapies require novel and safe pharmacological inhibitors to suppress the well-explored molecular targets in HNSCC. Here, we used dibromo-substituted benzosuberene synthesized from the mixture of α, β, γ-himachalenes and utilized as a precursor for the synthesis of Pyrrolone-fused benzosuberenes (PfBS) as MK2 inhibitors through aminocarbonylation approach in a single-pot reaction.

View Article and Find Full Text PDF

Protocol for the preparation of primary amine-containing catalysts on the resin.

STAR Protoc

March 2024

Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia. Electronic address:

In light of escalating sustainability concerns, addressing catalyst usage and waste production challenges becomes crucial. Here, we introduce a robust protocol for crafting recyclable polystyrene-supported primary amines, providing a promising solution via heterogeneous catalysis. The protocol details immobilization onto insoluble resins through ester, ether, or amide bonds, facilitating the synthesis of heterogeneous catalysts with diverse organic components.

View Article and Find Full Text PDF

This article describes the development of a recyclable polystyrene-based phosphonic acid resin and its use for the synthesis of immobilized glycosyl phosphonate donors and subsequent glycosylation reaction. This solid support was generated on a decagram scale from the commercially available Merrifield resin and subsequently functionalized via two different methods into eight different glycosylphosphonates. The resultant glycosylphosphonate-containing resins were obtained in 59-96% yields and were found to be bench-stable at room temperature.

View Article and Find Full Text PDF

A series of heterogeneous catalysts anchored to different polystyrene-based supports has been prepared and applied in an asymmetric [2,3]-Wittig rearrangement reaction of cyclohexanone derivatives. Among them, primary amino acid-derived (aminomethylated)polystyrene-supported catalysts showed excellent reactivity leading to the formation of rearranged products in good enantioselectivities of both diastereomers. Reusability issues connected to the deactivation of the catalyst were proved to be dependent on the end-capping strategy chosen for the blocking of the unreacted active sites of the resin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!