Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen-fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887929 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2010.01.041 | DOI Listing |
Mol Cell Biochem
December 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Henan Xinxiang, 453003, People's Republic of China.
To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.
View Article and Find Full Text PDFHeliyon
December 2024
Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
Heart failure (HF) syndrome is of great interest as an emerging epidemic. Due to the increasing elderly population worldwide, the total number of HF patients is increasing every day. This disease places a significant economic burden on the healthcare and treatment systems of developing societies, and this situation is very concerning.
View Article and Find Full Text PDFHistol Histopathol
December 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, PR China.
Extracellular adenine nucleotides serve as crucial signaling molecules and influence a broad spectrum of physiological and pathological processes. CD73, the rate-limiting enzyme in the metabolism of extracellular adenine nucleotides, is ubiquitously expressed on various cell types, particularly stem cells. CD73 mesenchymal stem cells (MSCs) have emerged as promising candidates for therapeutic applications due to their immunomodulatory and pro-regenerative properties.
View Article and Find Full Text PDFBiomed Eng Online
December 2024
Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, 15614, Iran.
Chemotherapy-induced cardiotoxicity is a significant concern in cancer treatment, as certain chemotherapeutic agents can have adverse effects on the cardiovascular system. This can lead to a range of cardiac complications, including heart failure, arrhythmias, myocardial dysfunction, pericardial complications, and vascular toxicity. Strategies to mitigate chemotherapy-induced cardiotoxicity may include the use of cardioprotective agents (e.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China.
Stem cell-derived blood vessel organoids are embedded in extracellular matrices to stimulate vessel sprouting. Although vascular organoids in 3D collagen I-Matrigel gels are currently available, they are primarily capillaries composed of endothelial cells (ECs), pericytes, and mesenchymal stem-like cells, which necessitate mature arteriole differentiation for neovascularization. In this context, the hypothesis that matrix viscoelasticity regulates vascular development is investigated in 3D cultures by encapsulating blood vessel organoids within viscoelastic gelatin/β-CD assembly dynamic hydrogels or methacryloyl gelatin non-dynamic hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!