Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcin.2009.11.006DOI Listing

Publication Analysis

Top Keywords

understanding role
4
role endothelial
4
endothelial progenitor
4
progenitor cells
4
cells cardiovascular
4
cardiovascular disease
4
disease coronary
4
coronary artery
4
artery lesion
4
lesion progression
4

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Unlabelled: Klinefelter syndrome (KS) is the most common sex chromosomal aneuploidy in males (47,XXY karyotype in 80-90% of cases), primarily characterized by hypergonadotropic hypogonadism and infertility. It encompasses a broad phenotypic spectrum, leading to variability in neurocognitive and psychosocial outcomes among affected individuals. Despite the recognized correlation between KS and various neuropsychiatric conditions, studies investigating potential sleep disorders, particularly in pediatric subjects, are lacking.

View Article and Find Full Text PDF

Bruton's tyrosine kinase inhibitor for multiple sclerosis: new hope or false dawn.

J Neurol

January 2025

Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK.

The first of several phase 3 trials examining efficacy in relapsing MS has not been able to demonstrate a significant benefit and has also raised important safety concerns. More results are on their way and it will be important to understand whether the safety signals identified are drug- or class-specific and whether other BTKi also fail to reach their endpoints for relapsing MS. However, as reported in preliminary data for another BTKi, it may be that they will have more of a role in progressive disease as hinted by the unraveling of relevant molecular mechanisms and pathways.

View Article and Find Full Text PDF

Ferroptosis: A Targetable Vulnerability for Melanoma Treatment.

J Invest Dermatol

January 2025

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:

Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!