microRNA398 (miR398) is a conserved miRNA of plants that targets two of the three copper/zinc superoxide dismutases (SOD) of Arabidopsis (CSD1 and CSD2) by triggering cleavage or inhibiting translation of their mRNAs. We analysed the transcriptomes of mutants impaired in miR398 production, and found that the mRNAs encoding the copper chaperone for superoxide dismutase (CCS1), which delivers copper to CSD1 and CSD2 apoproteins in different cellular compartments, are undiscovered targets of miR398. We identified the cleavage site in CCS1 mRNAs by 5'-RACE PCR. We further show that both CCS1 protein and mRNA levels are tightly linked to the quantities of miR398, which are themselves dependent on the copper content in the medium. We generated transgenic plants carrying a CCS1 mRNA version resistant to cleavage by miR398, and demonstrated that both CCS1 mRNAs and proteins accumulate in these plants when miR398 is abundant and copper limiting. Moreover, we show that one of the ten ARGONAUTE proteins of Arabidopsis (AGO10) is involved in miR398-directed translational inhibition of CCS1 mRNAs, as CCS1 protein, but not CCS1 mRNAs accumulates in ago10 (zll) mutants. Thus, miR398 mediates the cleavage and translational inhibition of mRNAs encoding CCS1, the chaperone protein that is essential for generating the mature copper/zinc SODs of Arabidopsis. Our results also imply that new targets that have not been identified by computing analyses have yet to be discovered, even for an extensively studied miRNA such as miR398.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2010.04162.x | DOI Listing |
Viruses
April 2019
Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
Plant Signal Behav
June 2010
Institut Jean Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France.
We recently identified a new target of microRNA398 (miR398), a conserved miRNA in plants. In Arabidopsis, miR398 targets the mRNAs of two copper/zinc superoxide dismutases (Cu/Zn SODs) by triggering their cleavage or repressing their translation. We analysed the transcriptomes of mutants impaired in miR398 production, revealing that the mRNAs encoding the chaperone (CCS1), essential for copper delivering to the Cu/Zn SODs of Arabidopsis and to generate the mature proteins, were undiscovered targets of miR398.
View Article and Find Full Text PDFPlant J
May 2010
Institut Jean Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, route de St Cyr, F-78026 Versailles, France.
microRNA398 (miR398) is a conserved miRNA of plants that targets two of the three copper/zinc superoxide dismutases (SOD) of Arabidopsis (CSD1 and CSD2) by triggering cleavage or inhibiting translation of their mRNAs. We analysed the transcriptomes of mutants impaired in miR398 production, and found that the mRNAs encoding the copper chaperone for superoxide dismutase (CCS1), which delivers copper to CSD1 and CSD2 apoproteins in different cellular compartments, are undiscovered targets of miR398. We identified the cleavage site in CCS1 mRNAs by 5'-RACE PCR.
View Article and Find Full Text PDFJ Virol
July 2005
Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, Oregon 97331-3804, USA.
The genomic RNAs of flaviviruses such as dengue virus (DEN) have a 5' m7GpppN cap like those of cellular mRNAs but lack a 3' poly(A) tail. We have studied the contributions to translational expression of 5'- and 3'-terminal regions of the DEN serotype 2 genome by using luciferase reporter mRNAs transfected into Vero cells. DCLD RNA contained the entire DEN 5' and 3' untranslated regions (UTRs), as well as the first 36 codons of the capsid coding region fused to the luciferase reporter gene.
View Article and Find Full Text PDFBiochem J
March 2004
Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Macul 5540, 138-11 Santiago, Chile.
MTs (metallothioneins) increase the resistance of cells to exposure to high Cu (copper) levels. Characterization of the MT-Cu complex suggests that MT has an important role in the cellular storage and/or delivery of Cu ions to cuproenzymes. In this work we investigate how these properties contribute to Cu homoeostasis by evaluating the uptake, accumulation and efflux of Cu in wild-type and MT I/II null rat fibroblast cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!