AI Article Synopsis

  • Rice is a key food source globally, making it crucial to enhance iron uptake and accumulation in the grains.
  • Researchers isolated the OsYSL2 transporter, which plays a significant role in iron and manganese transport within rice plants.
  • Manipulation of OsYSL2 expression through RNAi and overexpression resulted in varying iron concentrations in different parts of the plant, notably affecting iron levels in seeds and shoots, highlighting its importance for iron translocation.

Article Abstract

Rice (Oryza sativa) is indispensable in the diet of most of the world's population. Thus, it is an important target in which to alter iron (Fe) uptake and homeostasis, so as to increase Fe accumulation in the grain. We previously isolated OsYSL2, a functional iron [Fe(II)]- and manganese [Mn(II)]-nicotianamine complex transporter that is expressed in phloem cells and developing seeds. We produced RNAi (OsYSL2i) and overexpression lines (OXOsYSL2) of OsYSL2. At the vegetative stage in an OsYSL2i line, the Fe and Mn concentrations were decreased in the shoots, and the Fe concentration was increased in the roots. At the reproductive stage, positron-emitting tracer imaging system analysis revealed that Fe translocation to the shoots and seeds was suppressed in OsYSL2i. The Fe and Mn concentrations were decreased in the seeds of OsYSL2i, especially in the endosperm. Moreover, the Fe concentration in OXOsYSL2 was lower in the seeds and shoots, but higher in the roots, compared with the wild type. Furthermore, when OsYSL2 expression was driven by the sucrose transporter promoter, the Fe concentration in the polished rice was up to 4.4-fold higher compared with the wild type. These results indicate that the altered expression of OsYSL2 changes the localization of Fe, and that OsYSL2 is a critical Fe-nicotianamine transporter important for Fe translocation, especially in the shoots and endosperm.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2010.04158.xDOI Listing

Publication Analysis

Top Keywords

osysl2i concentrations
8
concentrations decreased
8
translocation shoots
8
compared wild
8
wild type
8
osysl2
6
rice metal-nicotianamine
4
transporter
4
metal-nicotianamine transporter
4
transporter osysl2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!