Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts.

ACS Nano

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

Published: February 2010

Semiconductor nanowires (NWs) are being actively investigated due to their unique functional properties which result from their quasi-one-dimensional structure. However, control over the crystallographic growth direction, diameter, location, and morphology of high-density NWs is essential to achieve the desirable properties and to integrate these NWs into miniaturized devices. This article presents evidence for the suitability of a biological templated catalyst approach to achieve high-density, epitaxial growth of NWs via the vapor-liquid-solid (VLS) mechanism. Bacterial surface-layer protein lattices from Deinococcus radiodurans were adsorbed onto germanium substrates of (111), (110), and (100) crystallographic orientations and used to template gold nanoparticles (AuNPs) of different diameters. Orientation-controlled growth of GeNWs was achieved from very small size (5-20 nm) biotemplated AuNP catalysts on all of the substrates studied. Biotemplated GeNWs exhibited improved morphologies, higher densities (NW/microm(2)), and more uniform length as compared to GeNWs grown from nontemplated AuNPs on the substrate surfaces. The results offer an integrated overview of the interplay of parameters such as catalyst size, catalyst density, substrate crystallographic orientation, and the presence of the protein template in determining the morphology and growth direction of GeNWs. A comparison between templated and nontemplated growth provides additional insight into the mechanism of VLS growth of biotemplated NWs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn901664rDOI Listing

Publication Analysis

Top Keywords

growth direction
8
growth
6
nws
5
epitaxy nanowires
4
nanowires grown
4
biotemplated
4
grown biotemplated
4
biotemplated nanoparticle
4
nanoparticle catalysts
4
catalysts semiconductor
4

Similar Publications

Recent advances of lysine lactylation in prokaryotes and eukaryotes.

Front Mol Biosci

January 2025

Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries.

MRS Bull

November 2024

Bioelectronics & Bioenergy Research Lab, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle , due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible.

View Article and Find Full Text PDF

Mind mapping stands as a contemporary approach to education, introducing an innovative means of teaching and learning. In current times, this technique is embraced due to its ability to enhance the learning and retention process. This investigation explored the imperative nature of adopting novel educational methodologies such as mind mapping, while also examining its benefits and constraints.

View Article and Find Full Text PDF

Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!