The photoelectron spectrum of the anion of the guanine...cytosine base pair (GC)(*-) is recorded for the first time. The observed variation in the spectral peak-height ratios with the source conditions suggests the presence of two or more anionic isomers. Two maxima of the broad bands in the photoelectron spectrum were measured at about 1.9 and about 2.6 eV. These values are very well reproduced by the vertical detachment energies of the B3LYP/6-31++G(d,p) calculated low-energy anionic structures, which are 1) the Watson-Crick base-pair anion with proton transferred from N1 of guanine to N3 of cytosine, 2) its analogue in which the proton is transferred from N9 of guanine to N7 of guanine, and 3) the global minimum geometry, which is formed from the latter anion by rotation of guanine about the axis approximately defined by C2 of guanine and C4 of cytosine. Furthermore, a minor difference in the stabilities of the two lowest energy anions explains the experimentally observed source (temperature) dependence of the PES spectrum. A rational procedure, based on the chemistry involved in the formation of anionic dimers, which enables the low-energy anions populated in the photoelectron spectrum to be identified is proposed. In contrast to the alternative combinatorial approach, which in the studied case would lead to carrying out quantum chemical calculations for 2000-2500 structures, the procedure described here reduces the computational problem to only 15 geometries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200900810DOI Listing

Publication Analysis

Top Keywords

photoelectron spectrum
12
guaninecytosine base
8
base pair
8
proton transferred
8
transferred guanine
8
guanine cytosine
8
guanine
5
low-energy-barrier proton
4
proton transfer
4
transfer induced
4

Similar Publications

Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.

Int J Biol Macromol

January 2025

Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:

Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.

View Article and Find Full Text PDF

Two synchrotron-based studies on 4H-pyran-4-thione, photoelectron spectroscopy and vacuum ultraviolet (VUV) absorption spectra were performed. A highly resolved structure was observed in the photoelectron spectrum (PES), in contrast to an earlier PES study, where little structure was observed. The sequence of ionic states was determined using configuration interaction and coupled cluster methods.

View Article and Find Full Text PDF

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF

Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.

View Article and Find Full Text PDF

Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy.

Acc Chem Res

January 2025

Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!