The prostate-apoptosis-response-gene-4 (Par-4) is up-regulated in prostate cells undergoing programmed cell death. Furthermore, Par-4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. In this study, we investigated how Par-4 modulates TRAIL-mediated apoptosis in TRAIL-resistant Caki cells. Par-4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par-4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase-8 and the effector caspase-3, together with an enforced cleavage of XIAP and c-FLIP. TRAIL-induced reduction of XIAP and c-FLIP protein levels in Par-4 overexpressing cells was prevented by z-VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL-treated Par-4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par-4 recovered Bcl-2 level to basal level induced by wild type Par-4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par-4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par-4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl-2, Akt, and NF-kappaB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.22504 | DOI Listing |
Exp Cell Res
January 2025
Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China. Electronic address:
Background: Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in regulating the proliferation, invasion, migration, and other malignant progression of various cancer cells. However, its mechanism in clear cell renal cell carcinoma (ccRCC) remains unclear.
Methods: UALCAN database was performed to predict APEX1 expression in ccRCC.
Cells
December 2024
Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany.
Renal cell carcinoma (RCC) is the most common form of kidney cancer, known for its immune evasion and resistance to chemotherapy. Evidence indicates that the SARS-CoV-2 virus may worsen outcomes for RCC patients, as well as patients with diminished renal function. Evidence suggests that the SARS-CoV-2 virus may exacerbate outcomes in RCC patients and those with impaired renal function.
View Article and Find Full Text PDFBiology (Basel)
December 2024
School of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China.
In this study, we investigated the effect and mechanism of Resibufogenin on renal cell carcinoma based on network pharmacology, molecular docking, and in vitro experiments. The results showed that there were 35 cross-targets between Resibufogenin and renal cell carcinoma. GO and KEGG pathway analyses indicated that Resibufogenin inhibited renal cancer cells through the vascular smooth muscle contraction signalling pathway and EGFR tyrosine kinase inhibitor resistance signaling pathway, and MAPK1, PRKCB, and Resibufogenin had strong associative activities.
View Article and Find Full Text PDFEpigenetics Chromatin
December 2024
Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia.
Background: There has been a notable increase in interest in the transcriptional regulator Kaiso, which has been linked to the regulation of clonal hematopoiesis, myelodysplastic syndrome, and tumorigenesis. Nevertheless, there are no consistent data on the binding sites of Kaiso in vivo in the genome. Previous ChIP-seq analyses for Kaiso contradicted the accumulated data of Kaiso binding sites obtained in vitro.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
Background: Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear.
Methods: This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!