Discovery of genes that confer resistance to diseases such as diet-induced obesity could have tremendous therapeutic impact. We previously demonstrated that the C57BL/6J-Chr(A/J)/NaJ panel of chromosome substitution strains (CSSs) is a unique model for studying resistance to diet-induced obesity. In the present study, three replicate CSS surveys showed remarkable consistency, with 13 A/J-derived chromosomes reproducibly conferring resistance to high-fat-diet-induced obesity. Twenty CSS intercrosses, one derived from each of the 19 autosomes and chromosome X, were used to determine the number and location of quantitative trait loci (QTLs) on individual chromosomes and localized six QTLs. However, analyses of mean body weight in intercross progeny versus C57BL/6J provided strong evidence that many QTLs discovered in the CSS surveys eluded detection in these CSS intercrosses. Studies of the temporal effects of these QTLs suggest that obesity resistance was dynamic, with QTLs acting at different ages or after different durations of diet exposure. Thus, these studies provide insight into the genetic architecture of complex traits such as resistance to diet-induced obesity in the C57BL/6J-Chr(A/J)/NaJ CSSs. Because some of the QTLs detected in the CSS intercrosses were not detected using a traditional C57BL/6J x A/J intercross, our results demonstrate that surveys of CSSs and congenic strains derived from them are useful complementary tools for analyzing complex traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831885 | PMC |
http://dx.doi.org/10.1007/s00335-010-9247-9 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.
Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, China.
Physical exercise is a cornerstone for preventing diet-induced obesity, while it is unclear whether physical exercise could offset high-fat, high-calories diet (HFCD)-induced cardiac dysfunction. Here, mice were fed with HFCD and simultaneously subjected to physical exercise. As expected, physical exercise prevented HFCD-induced whole-body fat deposition.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea. Electronic address:
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2025
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Gene circuits, which are genetically engineered systems designed to regulate gene expression, are emerging as powerful tools in disease theranostics, especially in mammalian cells. This review explores the latest advances in the design and application of gene circuits for detecting and treating various diseases. Synthetic gene circuits, inspired by electronic systems, offer precise control over therapeutic gene activity, allowing for real-time, user-defined responses to pathological signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!