Cloning of the human erythropoietin (EPO) gene and development of the first recombinant human erythropoietin (rHuEPO) drug were truly breakthroughs. This allowed a deeper understanding of the structure and pharmacology of rHuEpo, which in turn inspired the discovery and development of additional erythropoiesis-stimulating agents (ESAs). In vivo specific activity and serum half-life of rHuEPO are influenced by the amount and structure of the attached carbohydrate. Increased numbers of sialic acids on carbohydrate attached to rHuEPO correlated with a relative increase in in-vivo-specific activity and increased serum half-life. The effect of increasing the number of sialic-acid-containing carbohydrates on in-vivo-specific activity was explored. Initial research focused on solving the problem of how the protein backbone could be engineered so a cell would add more carbohydrate to it. Additional work resulted in darbepoetin alfa, a longer-acting molecule with two additional carbohydrate chains.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00228-009-0780-yDOI Listing

Publication Analysis

Top Keywords

erythropoiesis-stimulating agents
8
agents esas
8
darbepoetin alfa
8
human erythropoietin
8
serum half-life
8
in-vivo-specific activity
8
discovery basic
4
basic pharmacology
4
pharmacology erythropoiesis-stimulating
4
esas including
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!