Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability of the white rot fungus Trametes versicolor strain 1 to degrade and utilize methylated phenols (cresols) was established for the first time in a medium not containing any other carbon components. The data obtained demonstrated the better potential of the strain to assimilate p-cresol instead of o- or m- cresol. The 0.5 g/l p-cresol provided was degraded in full after 96 h. The effect of a dual substrate mixture (0.3 g/l phenol + 0.2 g/l p-cresol) on the growth behavior and degradation capacity of the investigated strain was examined. The cell-free supernatants were analyzed by HPLC. It was established that the presence of p-cresol had not prevented complete phenol degradation but had a significant delaying effect on the phenol degradation dynamics. Phenol hydroxylase, catechol 1.2-dioxygenase and cis,cis-muconate cyclase activities were obtained in conditions of single and mixed substrates cultivation. The influence of different phenolic substrates on phenol hydroxylase activity in Trametes versicolor 1 was established. The mathematical models describing the dynamics of single substrates' utilization as well as the mutual influence of phenol and p-cresol in the mixture were developed on the bases of Haldane kinetics. The estimated interaction coefficients (I(ph/cr) = 4.72, I(cr/ph) = 7.46) demonstrated the significant inhibition of p-cresol on phenol biodegradation and comparatively low level of influence of phenol presence on the p-cresol degradation. Molecular 18S RNA gene taxonomy of the investigated strain was performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10532-010-9330-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!