We demonstrate a mass-production-amenable technology for fabrication, surface modification and multifunction integration in polymeric microfluidic devices, namely direct lithography on the polymeric substrate followed by polymer plasma etching, and selective plasma deposition. We apply the plasma processing technology to fabricate polymeric microfluidics in poly(methyl methacrylate) (PMMA) and poly(ether ether ketone) (PEEK). First, deep anisotropic O(2) plasma etching is utilized to pattern the polymer via an in situ, highly etch-resistant, thin, Si-containing photoresist, or via a thick organic photoresist. Absolute control of surface roughness (from smooth to very rough), and the production of stable-in-time (slowly ageing) superhydrophilic microchannels are demonstrated. Second, we demonstrate the spontaneous capillary pumping through such rough, superhydrophilic plasma-etched microchannels in contrast to smooth ones, even 5 weeks after fabrication. Third, by using C(4)F(8) fluorocarbon plasma deposition through a stencil mask, we produce superhydrophobic patches inside the microchannels, and use them as passive valves. Our approach proposes "smart" multifunctional microfluidics fabricated by a plasma technology toolbox.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b916566e | DOI Listing |
Adv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFNat Mater
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.
Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322.
Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.
View Article and Find Full Text PDFPharmaceutics
December 2024
Ningbo No. 2 Hospital, Ningbo 315099, China.
The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!