Human aldo-keto reductase (AKR) 1C3 is a monomeric cytoplasmic multifunctional enzyme that reduces ketosteroids, ketoprostaglandins, and lipid aldehydes. AKR1C3 was initially identified as an enzyme involved in steroid metabolism. However, immunohistochemistry has demonstrated AKR1C3 in normal adult kidneys with expression in Bowman' capsule, the mesangial cells, proximal and distal tubules, as well as mature urothelial epithelium. The significance of its spatial distribution and metabolic activities in the kidney remains undefined. In addition to its ability to catalyze steroid hormones (including androgen, desoxycorticosterone, and progesterone) and involvement in prostaglandins metabolism, we suspect that AKR1C3 may function as a chemical barrier in the renal tubules for normal function in mature kidneys. Moreover, AKR1C3 may represent a developmental marker for some urological epithelial tissues. In this study, we demonstrate widespread expression of AKR1C3 in renal neoplasms with a phenotype recapitulating mature kidney (i.e., renal cell carcinoma) and urothelium also known as transitional epithelium (i.e., papillary urothelial carcinoma), but noted limited AKR1C3 expression in renal neoplasms with a phenotype recapitulating embryonic kidneys (i.e., Wilms' tumor). Our results suggest that AKR1C3 may represent a developmental marker that is related to renal epithelium maturity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809994 | PMC |
BMC Genomics
December 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.
Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.
Biochim Biophys Acta Mol Basis Dis
December 2024
Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China. Electronic address:
Currently, the molecular mechanisms underlying bladder cancer progression remain unclear. Immune checkpoint inhibitors (ICIs) have been used to treat bladder cancer, but their efficacy is limited. Exosomes, which play a critical role in cell communication, can alter the tumor microenvironment.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:
Radiation therapy represents the primary treatment option for triple-negative breast cancer. However, radio resistance is associated with a poor prognosis and an increased risk of recurrence. Radioresistant MDA-MB-231 cells, a radioresistant triple-negative breast cancer cell line, were co-treated with ortho-topolin riboside and melatonin.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
J Inflamm Res
November 2024
Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
Purpose: Ferroptosis is an underlying mechanism for various degenerative diseases, but its role in intervertebral disc degeneration remains elusive. This study aims to explore the key ferroptosis-related genes and its role in nucleus pulposus (NP) and annulus fibrosus (AF) degeneration.
Methods: We analyzed the gene expression profiles of NP and AF from the Gene Expression Omnibus database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!