Ultrafast bold fMRI using single-shot spin-echo echo planar imaging.

J Med Phys

Department of Biophysics and Clinical MRI Methods, Faculty of Medicine and Pharmacy, University of Fez, Fez, Morocco.

Published: January 2009

The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD) contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE) have been used to shorten readout trains in single-shot (SS) echo planar imaging (EPI). This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE) imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804146PMC
http://dx.doi.org/10.4103/0971-6203.48719DOI Listing

Publication Analysis

Top Keywords

single-shot spin-echo
8
echo planar
8
planar imaging
8
three tesla
8
tesla scanner
8
sense
6
ultrafast bold
4
bold fmri
4
single-shot
4
fmri single-shot
4

Similar Publications

Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).

Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.

View Article and Find Full Text PDF

Background: Bladder injury during cesarean delivery (CD) in pregnant women with severe placenta accreta spectrum (PAS) disorders mostly occurs in the dissection of vesico-uterine space. Placental MRI may help to assess the risk of bladder injury preoperatively.

Purpose: To identify the high-risk MRI signs of bladder injury during CD in women with severe PAS.

View Article and Find Full Text PDF

Follicle count, a pivotal metric in the adjunct diagnosis of polycystic ovary syndrome (PCOS), is often underestimated when assessed via transvaginal ultrasonography compared to MRI. Nevertheless, the repeatability of follicle counting using traditional MR images is still compromised by motion artifacts or inadequate spatial resolution. In this prospective study involving 22 PCOS patients, we employed periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and single-shot fast spin-echo (SSFSE) T2-weighted sequences to suppress motion artifacts in high-resolution ovarian MRI.

View Article and Find Full Text PDF

Comparison of DWI techniques in patients with epidermoid cyst: TGSE-BLADE DWI vs. SS-EPI DWI.

Jpn J Radiol

December 2024

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Kyoto, 6068507, Japan.

Purpose: To compare quantitative values and image quality between single-shot echo-planar imaging (SS-EPI) diffusion-weighted imaging (DWI) and two-dimensional turbo gradient- and spin-echo DWI with non-Cartesian BLADE trajectory (TGSE-BLADE DWI) in patients with epidermoid cyst.

Methods: Patients with epidermoid cyst who underwent both SS-EPI DWI and TGSE-BLADE DWI were included in this study. Two raters placed ROIs encircling the entire epidermoid cyst on SS-EPI DWI, and then on TGSE-BLADE DWI.

View Article and Find Full Text PDF

Background: When antispasmodics are unavailable, the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER; called BLADE by Siemens Healthineers) or half Fourier single-shot turbo spin echo (HASTE) is clinically used in gynecologic MRI. However, their imaging qualities are limited compared to Turbo Spin Echo (TSE) with antispasmodics. Even with antispasmodics, TSE can be artifact-affected, necessitating a rapid backup sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!