Background: Secondary bone marrow (BM) myelodysplastic syndromes (MDS) are increasingly common, as a result of radio or chemotherapy administered to a majority of cancer patients. Patients with secondary MDS have increased BM cell apoptosis, which results in BM dysfunction (cytopenias), and an increased risk of developing fatal acute leukemias. In the present study we asked whether TNF-alpha, known to regulate cell apoptosis, could modulate the onset of secondary MDS.
Principal Findings: We show that TNF-alpha is induced by irradiation and regulates BM cells apoptosis in vitro and in vivo. In contrast to irradiated wild type (WT) mice, TNF-alpha deficient (TNF-alpha KO) mice or WT mice treated with a TNF-alpha-neutralizing antibody were partially protected from the apoptotic effects of irradiation. Next we established a 3-cycle irradiation protocol, in which mice were sub-lethally irradiated once monthly over a 3 month period. In this model, irradiated WT mice presented loss of microsatellite markers on BM cells, low white blood cell (WBC) counts, reduced megakaryocyte (MK) and platelet levels (thrombocytopenia) and macrocytic anemia, phenoypes that suggest the irradiation protocol resulted in BM dysfunction with clinical features of MDS. In contrast, TNF-alpha KO mice were protected from the irradiation effects: BM cell apoptosis following irradiation was significantly reduced, concomitant with sustained BM MK numbers and absence of other cytopenias. Moreover, irradiated WT mice with long term (> or = 5 months) BM dysfunction had increased BM angiogenesis, MMPs and VEGF and NFkB p65, suggestive of disease progression.
Conclusion: Taken together, our data shows that TNF-alpha induction following irradiation modulates BM cell apoptosis and is a crucial event in BM dysfunction, secondary MDS onset and progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813873 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008980 | PLOS |
Exp Cell Res
January 2025
Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:
Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:
Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Yangtze University, Jingzhou, China. Electronic address:
Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China. Electronic address:
In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!