Modeling magnification and anisotropy in the primate foveal confluence.

PLoS Comput Biol

School of Psychiatry and The Black Dog Institute, University of New South Wales, Sydney Australia.

Published: January 2010

A basic organizational principle of the primate visual system is that it maps the visual environment repeatedly and retinotopically onto cortex. Simple algebraic models can be used to describe the projection from visual space to cortical space not only for V1, but also for the complex of areas V1, V2 and V3. Typically a conformal (angle-preserving) projection ensuring local isotropy is regarded as ideal and primate visual cortex is often regarded as an approximation of this ideal. However, empirical data show systematic deviations from this ideal that are especially relevant in the foveal projection. The aims of this study were to map the nature of anisotropy predicted by existing models, to investigate the optimization targets faced by different types of retino-cortical maps, and finally to propose a novel map that better models empirical data than other candidates. The retino-cortical map can be optimized towards a space-conserving homogenous representation or a quasi-conformal mapping. The latter would require a significantly enlarged representation of specific parts of the cortical maps. In particular it would require significant enlargement of parafoveal V2 and V3 which is not supported by empirical data. Further, the recently published principal layout of the foveal singularity cannot be explained by existing models. We suggest a new model that accurately describes foveal data, minimizing cortical surface area in the periphery but suggesting that local isotropy dominates the most foveal part at the expense of additional cortical surface. The foveal confluence is an important example of the detailed trade-offs between the compromises required for the mapping of environmental space to a complex of neighboring cortical areas. Our models demonstrate that the organization follows clear morphogenetic principles that are essential for our understanding of foveal vision in daily life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813258PMC
http://dx.doi.org/10.1371/journal.pcbi.1000651DOI Listing

Publication Analysis

Top Keywords

empirical data
12
foveal confluence
8
primate visual
8
space complex
8
local isotropy
8
existing models
8
cortical surface
8
foveal
7
models
5
cortical
5

Similar Publications

Study Design: Meta-Analysis.

Objective: The purpose of this systematic review and meta-analysis was to pool the available data comparing MIS to open surgery for thoracolumbar fractures and provide a more comprehensive assessment on this topic.

Background: There remains a debate over whether minimally invasive surgery (MIS) or open fixation provides superior outcomes for patients with thoracolumbar fractures.

View Article and Find Full Text PDF

An empirical study of LLaMA3 quantization: from LLMs to MLLMs.

Vis Intell

December 2024

Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zürich, Switzerland.

The LLaMA family, a collection of foundation language models ranging from 7B to 65B parameters, has become one of the most powerful open-source large language models (LLMs) and the popular LLM backbone of multi-modal large language models (MLLMs), widely used in computer vision and natural language understanding tasks. In particular, LLaMA3 models have recently been released and have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-constrained scenarios, we explore LLaMA3's capabilities when quantized to low bit-width.

View Article and Find Full Text PDF

Teaching high quality paediatric basic life support to laypeople: The development and evaluation of a virtual simulation game.

Resusc Plus

January 2025

Department of Paediatrics, Division of Paediatric Critical Care, CHEO, 401 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada.

Background: Self-directed training has been recognized as a reasonable alternative to traditional instructor-led formats to teach laypeople Basic Life Support (BLS). Virtual tools can facilitate high-quality self-directed resuscitation education; however, their role in teaching paediatric BLS remains unclear due to limited empiric evaluation and suboptimal design of existing tools.

Aim: We describe the development and evaluation of a virtual simulation game (VSG) designed to teach high-quality paediatric BLS using a self-directed, online format with integrated deliberate practice and feedback.

View Article and Find Full Text PDF

Background: Advancements in cardiac catheterization have improved survival for pediatric congenital heart disease patients, but the associated ionizing radiation risks necessitate ethical consideration.

Methods: This study presents an empirical model, developed from 3131 unique pediatric procedures, to establish alert levels based on a patient's lateral thickness of the thorax for various procedural categories during diagnostic or interventional cardiac catheterization. The model uses linear regression of logarithmic reference air kinetic energy released per unit mass (KERMA) and air KERMA area product, also referred to as dose area product, to set alert levels at the top 95% and 99% of patient data.

View Article and Find Full Text PDF

Objective: The purpose of this study is to analyse the changes in the equity of intensive care unit (ICU) bed allocation in 14 cities in China's Guangxi Zhuang Autonomous Region from 2018 to 2021, to identify the problems in the process of ICU bed allocation in China's ethnic minority regions.

Design: The Gini coefficient, Theil index, health resource density index, and spatial correlation analysis were used to analyse the current status of ICU bed resource allocation and allocation equity in Guangxi, China, on two dimensions: geography, and population.

Setting: The Guangxi Zhuang Autonomous Region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!